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Decimal	Error	and	Decimal	Accuracy
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|log10(xcomputed) – log10	(xexact)| = |log10	(xcomputed/xexact)|

Decimal	Error:

log10	(1/Decimal	Error)	=	–log10	(|log10	(xcomputed / xexact)|)

Decimal	Accuracy:

Note:	Underflow	to	zero	and	overflow	to	infinity	commit	infinitely	large decimal	errors.



Tapered	Accuracy	Plots:	32-bit
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32-bit	posits	appear	ideal	for	most	HPC	tasks	that	presently	use	
64-bit	floats.	Properly	used,	32-bit	posits	maintain	8	correct	
decimals,	more	than	enough	accuracy	for	the	answer.



Tapered	Accuracy	Plots:	16-bit
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16-bit	posits	seems	well-suited	to	signal	processing,	with	more	
dynamic	range	than	floats.	Signals	can	often	be	normalized	to	

stay	in	the	“sweet	spot”	where	accuracy	is	highest.



Decimal	Accuracy:	Floats	versus	Posits
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Size,
bits

Float	maximum	
accuracy,	bits

Posit	maximum	
accuracy,	bits

Posit	accuracy	
advantage

Where	posit	accuracy	
is	≥	float	accuracy

8 N.A. 6 N.A. N.A.
16 11 13 0.6	decimals ¹/64 to	64
32 24 28 1.2	decimals 10–6 to	106

64 53 59 1.8	decimals 1.4×10–17 to	7.2×1016



Dynamic	Range:	Floats	versus	Posits
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Size,
bits

IEEE	Standard	
float	exponent	

size,	bits

Float
dynamic
range

Draft	Standard	
posit	exponent	

size,	bits

Posit
dynamic
range

8 (3) (¹/64 to	16) 0 ¹/64 to	64
16 5 6×10–8 to	7×104 1 3.7×10–9 to	2.7×108

32 8 1.4×10–45 to	3×1038 2 7×10–37 to	1.3×1036

64 11 5×10–324 to	2×10308 3 5×10–150 to	2×10149



What	about	fixed-point	decimal	accuracy?
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Fixed	point	makes	sense	when	you	need	uniform	absolute error.	The	ramp	
shows	how	relative	accuracy	is	not	maximized	by	using	fixed-point.



Flexible	size	posits

• For	any	application,	examine	
the	histogram	of	magnitudes.

• Raising	ps raises	the	“tent”	
accuracy	plot	(and	widens	it).

• Raising	es doubles	tent	width	
(and	lowers	accuracy).

• Software	and	FPGAs	need	not	
follow	Draft	Posit	Standard;	
you	can	customize	to	match	
the	application	requirements.
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When	might	floats	do	better?

• When	histogram	is	skewed	to	
the	large	or	small	magnitudes.	
This	can	be	corrected	by	
rescaling.

• When	histogram	needs	both	
large	and small	values	at	high	
accuracy,	or	the	histogram	
looks	more	like	a	box	than	a	
tent.	Hard	to	correct,	but	
unusual	for	real	applications.
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Disadvantages	of	the	posit	format

• Fast	hardware	implementations	not	yet	in	conventional	CPUs
• Incomplete	math	libraries	for	all	ps,	es sizes	(cos,	log,	etc.)	
• Count	Leading	Zeros	(CLZ)	operation	needed	for	every	input.	
(Floats	need	CLZ	only	for	subnormal	inputs.	Disadvantage	
applies	to	software,	not	hardware.)

• If	a	computation	wanders	into	very	large	or	very	small	
magnitude	numbers,	accuracy	can	be	less than	for	floats.

• A	float	algorithm	that	“converges”	when	a	value	underflows	
to	zero needs	to	be	altered	to	work	for	posits.
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The	Quire
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The	quire	is	based	on	the	Exact	Dot	Product	(EDP)	of	Ulrich	Kulisch
and	provides	a	lifeline	to	exact	mathematics.	It	is	a	fixed-point	2’s	
complement	format,	with	one	exception	value	(NaR =	1000⋯000).



Quire	sizes	for	standard	posits	is	½ps2
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Posit	size	
(ps)

es
value

Quire	size
in	bits

8 0 32
16 1 128
32 2 512
64 3 2048

Note	that	for	32-bit	posits,	the	quire	
is	the	same	size	as	a	typical	cache	
line,	or	the	SSE	data	width.

64-bit	posits	should	very rarely	be	
needed.	(32-bit	posits	can	replace	
them	in	most	cases.)

Exact	dot	products	built	for	64-bit	
IEEE	floats	are	less	practical;	their	
size	is	not	a	power	of	2,	and	they	are	
over	4000	bits	long.



Fused	operations	should	never	be	covert

F(x,y):= sqrt(x*x – y*y)

Compiler	tries	to	improve	accuracy	by	using	fused	multiply-add:
Reg1=x*x; // this rounds down half the time.
Reg2=Reg1-y*y; //fused; y*y doesn’t round
Return sqrt(Reg2);

If	Reg1 holds	a	value	that	was	rounded	down,	Reg1-y*y will	be	
negative	since	y*y doesn’t	round!	So	Reg2 is	a	negative	number	with	no	
real	square	root.	FAIL
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Quire	benefits	for	matrix	multiplication
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× =N N

• N rounding	errors	per	dot	product	become	1	rounding	error.
• If	errors	are	statistically	independent,	quire	is	 𝑁� times	more	

accurate.
• For	HPC-size	problems,	this	can	easily	add	two	decimal	places	

more	accuracy.
• BLAS	routine	SDOT	is	easily	replaced	with	a	quire	fused	dot	

product
• For	parallel	algorithms,	use	quire	for	partial summations



Examples	of	what	posits	can	do
Fluid	dynamics,	linear	algebra,	FFTs,	neural	networks
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• Shock	wave	passing	through	initially	quiescent	
L-shaped	chamber

• Ideal	gas	Euler	equations

• Explicit	finite	volume	discretization
• High-resolution	Godunov	solver

An	independent	test	by	LLNL
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From	Lawrence	Livermore	
National	Laboratory,	with	
permission.	Simulation	of	a	
fluid	shock	wave	in	an
L-shaped	region:

3rd Party Validation of Posits
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Errors	for	six	different	32-bit	formats	(white	=	no	error):

Posits
Elias

GammaLevenstein
IEEE,	but
¼	range

IEEE	
floats

Posits	are	50x	more	accurate	than	floats,	the	
best	of	any	format	tested.



They	also	compared	64-bit	floats	and	posits

32-bit	formats

64-bit	formats
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“Posits	are	two	
orders	of	
magnitude	more	
accurate	than	
floats”	— Stephen	
Lindstrom,	LLNL



Challenge:	Invert	a	Hilbert	Matrix	Numerically
In	least-squares	curve	fitting,	n-by-n Hilbert	matrices	𝐇$	arise

They’re	brutally ill-conditioned	
(nearly	singular).	This	one	has	
a	condition	number	of	~5×105.	
The	exact	inverse	is	all	
integers.
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Let’s	try	32-bit	
IEEE	floats,	and	
then	32-bit	posits.
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Scale	both	sides	by	
5×7×9	=	315	so	the	
matrix	can	be	
expressed	exactly by	
both	floats	and	posits.



Use	LDLT decomposition
Float	result	has	worst-case	accuracy	of	only	3.7	decimals	correct:

Worst-case	posit	accuracy	is	6.3	decimals,	over	400	times as	accurate:

Float	𝐇&=> =

Posit	𝐇&=> =

The	posit	advantage	typically	far	exceeds	what	you’d	expect	from	
having	a	few	extra	bits	in	the	fraction	(27	bits	versus	23	bits,	here)
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But	posits	have	a	secret	weapon,	the	quire
Compute	the	posit	inverse	times	H5 exactly,	using	the	quire.	Compare	
with	the	identity	matrix	(i.e.,	compute	the	residual),	and	use	that	as	a	
correction	to	the	original	calculation:

Worst-case	error	is…	zero.	There	isn’t	any	error.	That’s	the	exact inverse.

Quire-corrected	Posit	𝐇&=> =
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Floats	cannot	do	this,	even	using	double-precision.

21



An	astonishing	technique	for	maximum	accuracy
Any	expression	using	+	– × /	can	be	written	as	Lx = b where	L	is	lower	
triangular	and	the	last	xn is	the	desired	calculation. Example:
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f =	(a + b)	× c – d / e		

x1
x2
x3
x4

e × x5
x6

= a
= x1 + b
= c × x2
= d
= x4
= x3 – x5

1
–1
0
0
0
0

a
b
0
d
0
0

x1
x2
x3
x4
x5
x6

0
1
c
0
0
0

0
0
–1
0
0
–1

0
0
0
1
–1
0

0
0
0
0
e
1

0
0
0
0
0
1

=

Solving	for	x using	the	quire	lets	us	evaluate	f = x6 correctly	rounded!



The	quire	allows	“Karlsruhe	Accurate	Arithmetic.”
This	removes	most	of	the	need	for	64-bit	format.

• Great	for	polynomials,	even	badly-
conditioned	ones

• Can	be	done	automatically	by	the	
compiler.

• “XSC”	languages	apply	this	technique,	
but	not	to	reduce	data	size.

• Idea:	Let	user	mark the	variables	that	
need	guaranteed	accuracy,	instead	of	
applying	everywhere.

• 32-bit	posit	answers	can	be	more	
accurate	than	64-bit	float	answers.

Ulrich	Kulisch



Posits	for	Fast	Fourier	Transforms	(FFTs)
• FFTs	are	very	

communication	
bound.

• Most	efforts	(like	
FFTW)	focus	on	
lowest	op	count.

• More	potent	
approach:	reduce	
the	data	size	by	
using	posit	
format
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Methodology:	Measure	“round	trip”	error
for	1024-point	and	4096-point	complex	FFTs.

If	a	format	can	transform	Analog-to-Digital	Converter	(ADC)	signals	
forward	and	backward	without	loss,	there	is	no	need	for	higher	precision.
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⓶ Forward	FFT

Posit
16-bit

Float
16-bit

⓷ Inverse	FFT

Posit
16-bit

Float
16-bit

⓸ Inverse	Transform

ADCʹ
Compare	to
original	signal

ADC
12-bit,	say

⓵ Convert

Posit
16-bit

Float
16-bit
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1024-point	
Complex	FFT	
Round	Trip

16-bit	posits	can	do	this;	16-bit	floats	cannot.

Floats	only	get	32%	of	the	original	
values	back

Posits	get	98%	of	the	original	
values	back,	and	any	errors	are	at	
most	one	ULP



Neural	Networks,	both	Training	and	Inference
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From	“Deep	Positron:	A	Deep	Neural	Network	Using	the	Posit	Number	
System,”	D.	Kudithipudi,	J.	Gustafson,	H.	Langroudi,	Z.	Carmichael

Number	of	
bits

Posit	
Accuracy

Float	
Accuracy

8 67.64% 67.93%

7 67.52% 67.37%

6 63.77% 46.23%

5 31.18% 44.85%

Float32	accuracy	is	68.45%.
8-bit	Float	used	3	exponent	bits.
Quire	was	not	used	for	posit	results.

Cifar-10,	ConvNet study	by	RIT
(simple	5-layer	net,	preliminary)

This	shows	why	fixed-point	
is	not the	best	choice.

Fixed-Point
Decimal
Accuracy

Histogram	of	values	used	in	AlexNet



Summary

• Posits	can	fix	float	shortcomings,	for	AI	and	HPC:
• Taper	the	accuracy	for	more	info-per-bit.
• Simplify	exceptions,	rounding,	unused	features
• Match	dynamic	range	to	application	needs
• Make	the	exact	dot	product	practical
• Restore	associative,	distributive	laws
• Make	calculations	bitwise-reproducible

• Faster;	reduces	communication	costs
• More	accurate,	especially	if	the	quire	is	used
• Lower	energy	and	power
• Less	chip	area
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End	of
Advanced	Posit	Tutorial	

Lecture


