
Tutorial	Lecture:
Advanced	Posit	Arithmetic

Prof.	John	L.	Gustafson
A*STAR	and	National	University	of	Singapore

26	March	2019

Decimal	Error	and	Decimal	Accuracy

2

|log10(xcomputed) – log10	(xexact)| = |log10	(xcomputed/xexact)|

Decimal	Error:

log10	(1/Decimal	Error)	=	–log10	(|log10	(xcomputed / xexact)|)

Decimal	Accuracy:

Note:	Underflow	to	zero	and	overflow	to	infinity	commit	infinitely	large decimal	errors.

Tapered	Accuracy	Plots:	32-bit

3

32-bit	posits	appear	ideal	for	most	HPC	tasks	that	presently	use	
64-bit	floats.	Properly	used,	32-bit	posits	maintain	8	correct	
decimals,	more	than	enough	accuracy	for	the	answer.

Tapered	Accuracy	Plots:	16-bit

4

16-bit	posits	seems	well-suited	to	signal	processing,	with	more	
dynamic	range	than	floats.	Signals	can	often	be	normalized	to	

stay	in	the	“sweet	spot”	where	accuracy	is	highest.

Decimal	Accuracy:	Floats	versus	Posits

5

Size,
bits

Float	maximum	
accuracy,	bits

Posit	maximum	
accuracy,	bits

Posit	accuracy	
advantage

Where	posit	accuracy	
is	≥	float	accuracy

8 N.A. 6 N.A. N.A.
16 11 13 0.6	decimals ¹/64 to	64
32 24 28 1.2	decimals 10–6 to	106

64 53 59 1.8	decimals 1.4×10–17 to	7.2×1016

Dynamic	Range:	Floats	versus	Posits

6

Size,
bits

IEEE	Standard	
float	exponent	

size,	bits

Float
dynamic
range

Draft	Standard	
posit	exponent	

size,	bits

Posit
dynamic
range

8 (3) (¹/64 to	16) 0 ¹/64 to	64
16 5 6×10–8 to	7×104 1 3.7×10–9 to	2.7×108

32 8 1.4×10–45 to	3×1038 2 7×10–37 to	1.3×1036

64 11 5×10–324 to	2×10308 3 5×10–150 to	2×10149

What	about	fixed-point	decimal	accuracy?

7

Fixed	point	makes	sense	when	you	need	uniform	absolute error.	The	ramp	
shows	how	relative	accuracy	is	not	maximized	by	using	fixed-point.

Flexible	size	posits

• For	any	application,	examine	
the	histogram	of	magnitudes.

• Raising	ps raises	the	“tent”	
accuracy	plot	(and	widens	it).

• Raising	es doubles	tent	width	
(and	lowers	accuracy).

• Software	and	FPGAs	need	not	
follow	Draft	Posit	Standard;	
you	can	customize	to	match	
the	application	requirements.

8

log(|x|)
0

#	of	occurrences

0 log(maxpos)
log(|x|)

accuracy

log(minpos)

log(|x|)
0

accuracy

log(minpos) log(maxpos)

When	might	floats	do	better?

• When	histogram	is	skewed	to	
the	large	or	small	magnitudes.	
This	can	be	corrected	by	
rescaling.

• When	histogram	needs	both	
large	and small	values	at	high	
accuracy,	or	the	histogram	
looks	more	like	a	box	than	a	
tent.	Hard	to	correct,	but	
unusual	for	real	applications.

0

log(|x|)
0

#	of	occurrences

log(|x|)

#	of	occurrences

#	of	occurrences

log(|x|)
0

0
log(|x|)

#	of	occurrences

Float	accuracy

9

Disadvantages	of	the	posit	format

• Fast	hardware	implementations	not	yet	in	conventional	CPUs
• Incomplete	math	libraries	for	all	ps,	es sizes	(cos,	log,	etc.)	
• Count	Leading	Zeros	(CLZ)	operation	needed	for	every	input.	
(Floats	need	CLZ	only	for	subnormal	inputs.	Disadvantage	
applies	to	software,	not	hardware.)

• If	a	computation	wanders	into	very	large	or	very	small	
magnitude	numbers,	accuracy	can	be	less than	for	floats.

• A	float	algorithm	that	“converges”	when	a	value	underflows	
to	zero needs	to	be	altered	to	work	for	posits.

10

The	Quire

11

The	quire	is	based	on	the	Exact	Dot	Product	(EDP)	of	Ulrich	Kulisch
and	provides	a	lifeline	to	exact	mathematics.	It	is	a	fixed-point	2’s	
complement	format,	with	one	exception	value	(NaR =	1000⋯000).

Quire	sizes	for	standard	posits	is	½ps2

12

Posit	size	
(ps)

es
value

Quire	size
in	bits

8 0 32
16 1 128
32 2 512
64 3 2048

Note	that	for	32-bit	posits,	the	quire	
is	the	same	size	as	a	typical	cache	
line,	or	the	SSE	data	width.

64-bit	posits	should	very rarely	be	
needed.	(32-bit	posits	can	replace	
them	in	most	cases.)

Exact	dot	products	built	for	64-bit	
IEEE	floats	are	less	practical;	their	
size	is	not	a	power	of	2,	and	they	are	
over	4000	bits	long.

Fused	operations	should	never	be	covert

F(x,y):= sqrt(x*x – y*y)

Compiler	tries	to	improve	accuracy	by	using	fused	multiply-add:
Reg1=x*x; // this rounds down half the time.
Reg2=Reg1-y*y; //fused; y*y doesn’t round
Return sqrt(Reg2);

If	Reg1 holds	a	value	that	was	rounded	down,	Reg1-y*y will	be	
negative	since	y*y doesn’t	round!	So	Reg2 is	a	negative	number	with	no	
real	square	root.	FAIL

13

Quire	benefits	for	matrix	multiplication

14

× =N N

• N rounding	errors	per	dot	product	become	1	rounding	error.
• If	errors	are	statistically	independent,	quire	is	 𝑁� times	more	

accurate.
• For	HPC-size	problems,	this	can	easily	add	two	decimal	places	

more	accuracy.
• BLAS	routine	SDOT	is	easily	replaced	with	a	quire	fused	dot	

product
• For	parallel	algorithms,	use	quire	for	partial summations

Examples	of	what	posits	can	do
Fluid	dynamics,	linear	algebra,	FFTs,	neural	networks

15

• Shock	wave	passing	through	initially	quiescent	
L-shaped	chamber

• Ideal	gas	Euler	equations

• Explicit	finite	volume	discretization
• High-resolution	Godunov	solver

An	independent	test	by	LLNL

@tu+r · F (u) = 0

u =

0

@
⇢
⇢v
⇢E

1

A F (u) =

0

@
⇢v

⇢v ⌦ v + p

⇢vH

1

A

⇢H = ⇢E + p⇢E =
p

� � 1
+

1

2
|v|2

Uniform	grid:	
512×256	+	
256×768	cells

un
i = un

i � �t

�x

2X

d=1

h
F d
i+ 1

2e
d � F d

i� 1
2e

d

i

uR
x

uL

t

From	Lawrence	Livermore	
National	Laboratory,	with	
permission.	Simulation	of	a	
fluid	shock	wave	in	an
L-shaped	region:

3rd Party Validation of Posits

17

Errors	for	six	different	32-bit	formats	(white	=	no	error):

Posits
Elias

GammaLevenstein
IEEE,	but
¼	range

IEEE	
floats

Posits	are	50x	more	accurate	than	floats,	the	
best	of	any	format	tested.

They	also	compared	64-bit	floats	and	posits

32-bit	formats

64-bit	formats

18

“Posits	are	two	
orders	of	
magnitude	more	
accurate	than	
floats”	— Stephen	
Lindstrom,	LLNL

Challenge:	Invert	a	Hilbert	Matrix	Numerically
In	least-squares	curve	fitting,	n-by-n Hilbert	matrices	𝐇$	arise

They’re	brutally ill-conditioned	
(nearly	singular).	This	one	has	
a	condition	number	of	~5×105.	
The	exact	inverse	is	all	
integers.

𝐇& =

1
1/2
1/3
1/4
1/5

	
	
	
	
	

1/2
1/3
1/4
1/5
1/6

	
	
	
		
	

1/3
1/4
1/5
1/6
1/7

	
	
	
	
	

1/4
1/5
1/6
1/7
1/8

	
	
	
	
	

1/5
1/6
1/7
1/8
1/9

ℎ3,5 =
1

𝑖 + 𝑗 − 1

315 : 𝐇& =

315.			
157.5		
105.				
		78.75
		63.					

	
	
	
	
	

157.5		
105.					
		78.75
		63.			
		52.5		

	
	
	
		
	

105.			
				78.75
		63.			
			52.5		
		45.			

	
	
	
	
	

78.75		
63.							
52.5					
45.							
39.375

	
	
	
	
	

63.						
52.5				
45.							
39.375
35.							

Let’s	try	32-bit	
IEEE	floats,	and	
then	32-bit	posits.

19

Scale	both	sides	by	
5×7×9	=	315	so	the	
matrix	can	be	
expressed	exactly by	
both	floats	and	posits.

Use	LDLT decomposition
Float	result	has	worst-case	accuracy	of	only	3.7	decimals	correct:

Worst-case	posit	accuracy	is	6.3	decimals,	over	400	times as	accurate:

Float	𝐇&=> =

Posit	𝐇&=> =

The	posit	advantage	typically	far	exceeds	what	you’d	expect	from	
having	a	few	extra	bits	in	the	fraction	(27	bits	versus	23	bits,	here)

20

But	posits	have	a	secret	weapon,	the	quire
Compute	the	posit	inverse	times	H5 exactly,	using	the	quire.	Compare	
with	the	identity	matrix	(i.e.,	compute	the	residual),	and	use	that	as	a	
correction	to	the	original	calculation:

Worst-case	error	is…	zero.	There	isn’t	any	error.	That’s	the	exact inverse.

Quire-corrected	Posit	𝐇&=> =

𝟐𝟓
−𝟑𝟎𝟎
𝟏𝟎𝟓𝟎
−𝟏𝟒𝟎𝟎
𝟔𝟑𝟎

	
	
	
	
	

−𝟑𝟎𝟎
𝟒𝟖𝟎𝟎

−𝟏𝟖𝟗𝟎𝟎
𝟐𝟔𝟖𝟖𝟎
−𝟏𝟐𝟔𝟎𝟎

	
	
	
		
	

𝟏𝟎𝟓𝟎
−𝟏𝟖𝟗𝟎𝟎
𝟕𝟗𝟑𝟖𝟎

−𝟏𝟏𝟕𝟔𝟎𝟎
𝟓𝟔𝟕𝟎𝟎

	
	
	
	
	

−𝟏𝟒𝟎𝟎
𝟐𝟔𝟖𝟖𝟎

−𝟏𝟏𝟕𝟔𝟎𝟎
𝟏𝟕𝟗𝟐𝟎𝟎
−𝟖𝟖𝟐𝟎𝟎

	
	
	
	
	

𝟔𝟑𝟎
−𝟏𝟐𝟔𝟎𝟎
𝟓𝟔𝟕𝟎𝟎
−𝟖𝟖𝟐𝟎𝟎
𝟒𝟒𝟏𝟎𝟎

Floats	cannot	do	this,	even	using	double-precision.

21

An	astonishing	technique	for	maximum	accuracy
Any	expression	using	+	– × /	can	be	written	as	Lx = b where	L	is	lower	
triangular	and	the	last	xn is	the	desired	calculation. Example:

22

f =	(a + b)	× c – d / e		

x1
x2
x3
x4

e × x5
x6

= a
= x1 + b
= c × x2
= d
= x4
= x3 – x5

1
–1
0
0
0
0

a
b
0
d
0
0

x1
x2
x3
x4
x5
x6

0
1
c
0
0
0

0
0
–1
0
0
–1

0
0
0
1
–1
0

0
0
0
0
e
1

0
0
0
0
0
1

=

Solving	for	x using	the	quire	lets	us	evaluate	f = x6 correctly	rounded!

The	quire	allows	“Karlsruhe	Accurate	Arithmetic.”
This	removes	most	of	the	need	for	64-bit	format.

• Great	for	polynomials,	even	badly-
conditioned	ones

• Can	be	done	automatically	by	the	
compiler.

• “XSC”	languages	apply	this	technique,	
but	not	to	reduce	data	size.

• Idea:	Let	user	mark the	variables	that	
need	guaranteed	accuracy,	instead	of	
applying	everywhere.

• 32-bit	posit	answers	can	be	more	
accurate	than	64-bit	float	answers.

Ulrich	Kulisch

Posits	for	Fast	Fourier	Transforms	(FFTs)
• FFTs	are	very	

communication	
bound.

• Most	efforts	(like	
FFTW)	focus	on	
lowest	op	count.

• More	potent	
approach:	reduce	
the	data	size	by	
using	posit	
format

24

Methodology:	Measure	“round	trip”	error
for	1024-point	and	4096-point	complex	FFTs.

If	a	format	can	transform	Analog-to-Digital	Converter	(ADC)	signals	
forward	and	backward	without	loss,	there	is	no	need	for	higher	precision.

25

⓶ Forward	FFT

Posit
16-bit

Float
16-bit

⓷ Inverse	FFT

Posit
16-bit

Float
16-bit

⓸ Inverse	Transform

ADCʹ
Compare	to
original	signal

ADC
12-bit,	say

⓵ Convert

Posit
16-bit

Float
16-bit

26

1024-point	
Complex	FFT	
Round	Trip

16-bit	posits	can	do	this;	16-bit	floats	cannot.

Floats	only	get	32%	of	the	original	
values	back

Posits	get	98%	of	the	original	
values	back,	and	any	errors	are	at	
most	one	ULP

Neural	Networks,	both	Training	and	Inference

27

From	“Deep	Positron:	A	Deep	Neural	Network	Using	the	Posit	Number	
System,”	D.	Kudithipudi,	J.	Gustafson,	H.	Langroudi,	Z.	Carmichael

Number	of	
bits

Posit	
Accuracy

Float	
Accuracy

8 67.64% 67.93%

7 67.52% 67.37%

6 63.77% 46.23%

5 31.18% 44.85%

Float32	accuracy	is	68.45%.
8-bit	Float	used	3	exponent	bits.
Quire	was	not	used	for	posit	results.

Cifar-10,	ConvNet study	by	RIT
(simple	5-layer	net,	preliminary)

This	shows	why	fixed-point	
is	not the	best	choice.

Fixed-Point
Decimal
Accuracy

Histogram	of	values	used	in	AlexNet

Summary

• Posits	can	fix	float	shortcomings,	for	AI	and	HPC:
• Taper	the	accuracy	for	more	info-per-bit.
• Simplify	exceptions,	rounding,	unused	features
• Match	dynamic	range	to	application	needs
• Make	the	exact	dot	product	practical
• Restore	associative,	distributive	laws
• Make	calculations	bitwise-reproducible

• Faster;	reduces	communication	costs
• More	accurate,	especially	if	the	quire	is	used
• Lower	energy	and	power
• Less	chip	area

28

End	of
Advanced	Posit	Tutorial	

Lecture

