Tutorial Lecture: Advanced Posit Arithmetic

Prof. John L. Gustafson

A*STAR and National University of Singapore

Decimal Error and Decimal Accuracy

Decimal Error:

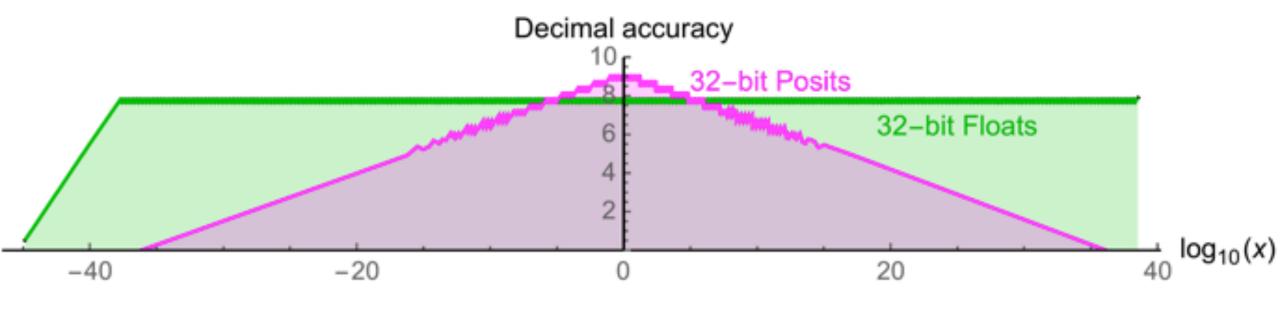
$$|\log_{10}(x_{\text{computed}}) - \log_{10}(x_{\text{exact}})| = |\log_{10}(x_{\text{computed}}/x_{\text{exact}})|$$

Decimal Accuracy:

$$\log_{10} \left(1/\text{Decimal Error} \right) = -\log_{10} \left(\left| \log_{10} \left(x_{\text{computed}} / x_{\text{exact}} \right) \right| \right)$$

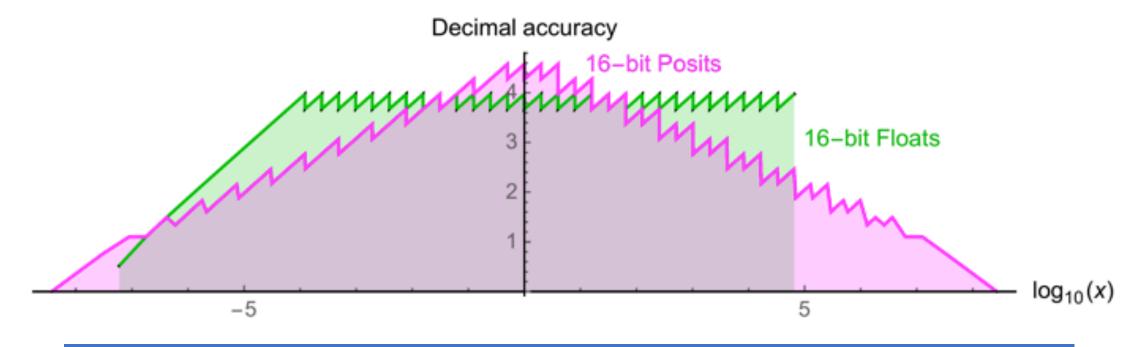
Note: Underflow to zero and overflow to infinity commit *infinitely large* decimal errors.

Tapered Accuracy Plots: 32-bit



32-bit posits appear ideal for most HPC tasks that presently use 64-bit floats. Properly used, 32-bit posits maintain 8 correct decimals, more than enough accuracy for the *answer*.

Tapered Accuracy Plots: 16-bit



16-bit posits seems well-suited to signal processing, with more dynamic range than floats. Signals can often be normalized to stay in the "sweet spot" where accuracy is highest.

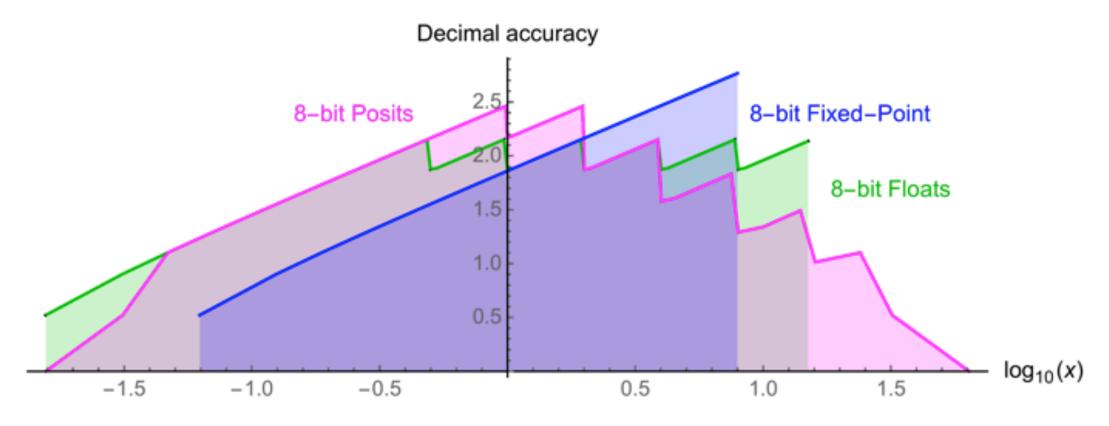
Decimal Accuracy: Floats versus Posits

Size, bits	Float maximum accuracy, bits	Posit maximum accuracy, bits	Posit accuracy advantage	Where posit accuracy is ≥ float accuracy
8	N.A.	6	N.A.	N.A.
16	11	13	0.6 decimals	1/64 to 64
32	24	28	1.2 decimals	10 ⁻⁶ to 10 ⁶
64	53	59	1.8 decimals	1.4×10 ⁻¹⁷ to 7.2×10 ¹⁶

Dynamic Range: Floats versus Posits

Size, bits	IEEE Standard float exponent size, bits	Float dynamic range	Draft Standard posit exponent size, bits	Posit dynamic range
8	(3)	(½64 to 16)	0	1/64 to 64
16	5	6×10 ⁻⁸ to 7×10 ⁴	1	3.7×10 ⁻⁹ to 2.7×10 ⁸
32	8	1.4×10 ⁻⁴⁵ to 3×10 ³⁸	2	7×10 ⁻³⁷ to 1.3×10 ³⁶
64	11	5×10 ⁻³²⁴ to 2×10 ³⁰⁸	3	5×10 ⁻¹⁵⁰ to 2×10 ¹⁴⁹

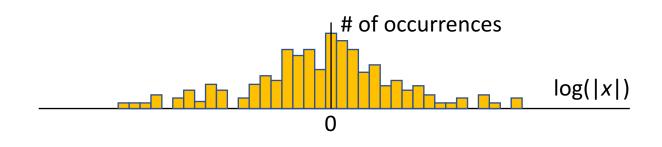
What about fixed-point decimal accuracy?

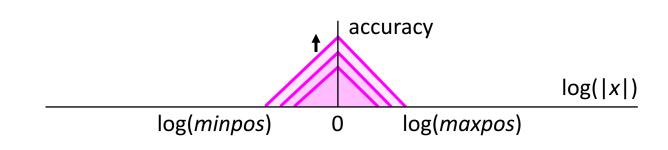


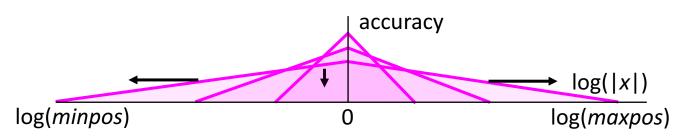
Fixed point makes sense when you need uniform *absolute* error. The ramp shows how *relative* accuracy is not maximized by using fixed-point.

Flexible size posits

- For any application, examine the histogram of magnitudes.
- Raising ps raises the "tent" accuracy plot (and widens it).
- Raising es doubles tent width (and lowers accuracy).
- Software and FPGAs need not follow Draft Posit Standard; you can customize to match the application requirements.

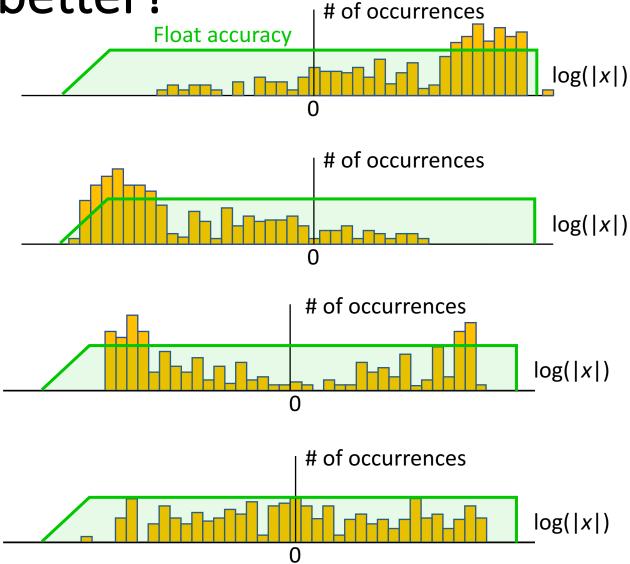






When might floats do better?

- When histogram is skewed to the large or small magnitudes. This can be corrected by rescaling.
- When histogram needs both large and small values at high accuracy, or the histogram looks more like a box than a tent. Hard to correct, but unusual for real applications.



Disadvantages of the posit format

- Fast hardware implementations not yet in conventional CPUs
- Incomplete math libraries for all ps, es sizes (cos, log, etc.)
- Count Leading Zeros (CLZ) operation needed for every input. (Floats need CLZ only for subnormal inputs. Disadvantage applies to software, not hardware.)
- If a computation wanders into very large or very small magnitude numbers, accuracy can be **less** than for floats.
- A float algorithm that "converges" when a value underflows to zero needs to be altered to work for posits.

The Quire

quire | kwī(ə)r |

noun

four sheets of paper or parchment folded to form eight leaves, as in medieval manuscripts.

 any collection of leaves one within another in a manuscript or book.

The quire is based on the Exact Dot Product (EDP) of Ulrich Kulisch and provides a **lifeline to exact mathematics**. It is a fixed-point 2's complement format, with one exception value (NaR = 1000...000).

Quire sizes for standard posits is ½ ps²

Posit size (ps)	<i>es</i> value	Quire size in bits
8	0	32
16	1	128
32	2	512
64	3	2048

Note that for 32-bit posits, the quire is the same size as a typical cache line, or the SSE data width.

64-bit posits should *very* rarely be needed. (32-bit posits can replace them in most cases.)

Exact dot products built for 64-bit IEEE floats are less practical; their size is not a power of 2, and they are over 4000 bits long.

Fused operations should never be covert

```
F(x,y) := sqrt(x*x - y*y)
```

Compiler tries to improve accuracy by using fused multiply-add:

```
Reg1=x*x; // this rounds down half the time.
Reg2=Reg1-y*y; //fused; y*y doesn't round
Return sqrt(Reg2);
```

If **Reg1** holds a value that was rounded down, **Reg1-y*y** will be negative since **y*y** doesn't round! So **Reg2** is a negative number with no real square root. **FAIL**

Quire benefits for matrix multiplication

- *N* rounding errors per dot product become 1 rounding error.
 - If errors are statistically independent, quire is \sqrt{N} times more accurate.
 - For HPC-size problems, this can easily add two decimal places more accuracy.
- BLAS routine SDOT is easily replaced with a quire fused dot product
- For parallel algorithms, use quire for partial summations

Examples of what posits can do

Fluid dynamics, linear algebra, FFTs, neural networks

An independent test by LLNL

- Shock wave passing through initially quiescent L-shaped chamber
- Ideal gas Euler equations

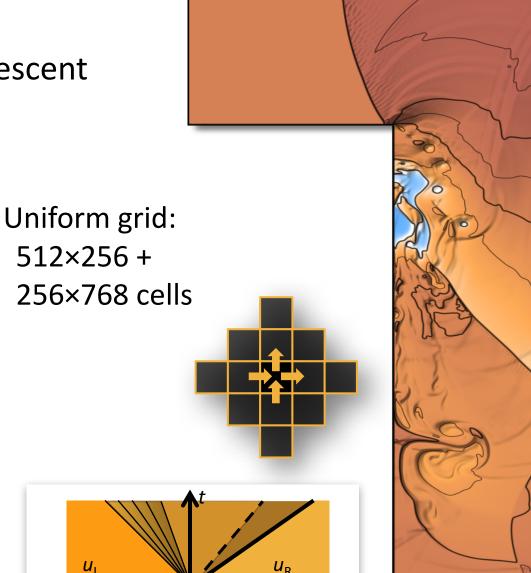
$$\partial_t u + \nabla \cdot F(u) = 0$$

$$u = \begin{pmatrix} \rho \\ \rho v \\ \rho E \end{pmatrix} \qquad F(u) = \begin{pmatrix} \rho v \\ \rho v \otimes v + p \\ \rho v H \end{pmatrix}$$

$$\rho E = \frac{p}{\gamma - 1} + \frac{1}{2}|v|^2 \qquad \rho H = \rho E + p$$

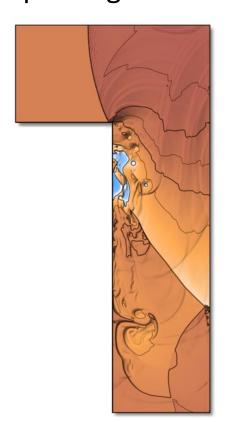
$$u_{\mathbf{i}}^{n} = u_{\mathbf{i}}^{n} - \frac{\Delta t}{\Delta x} \sum_{d=1}^{2} \left[F_{\mathbf{i} + \frac{1}{2}\mathbf{e}^{d}}^{d} - F_{\mathbf{i} - \frac{1}{2}\mathbf{e}^{d}}^{d} \right]$$

- Explicit finite volume discretization
- High-resolution Godunov solver

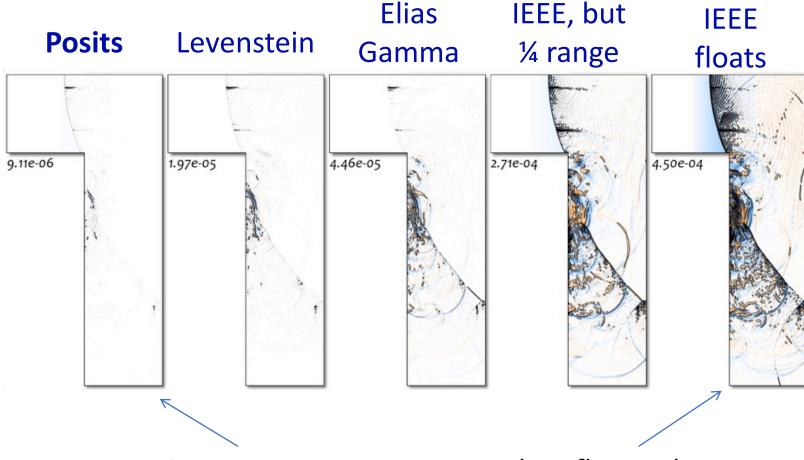


3rd Party Validation of Posits

From Lawrence Livermore
National Laboratory, with
permission. Simulation of a
fluid shock wave in an
L-shaped region:

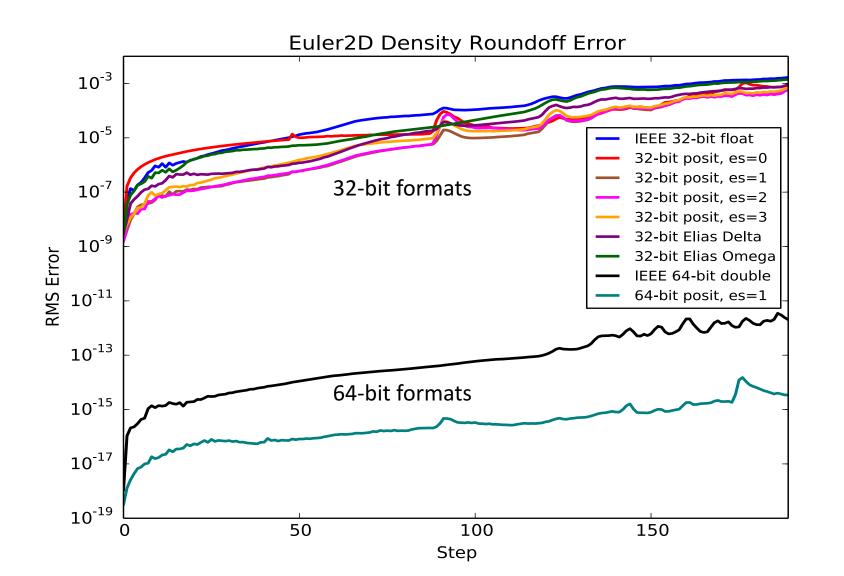


Errors for six different 32-bit formats (white = no error):



Posits are **50x more accurate** than floats, the best of any format tested.

They also compared 64-bit floats and posits



"Posits are two orders of magnitude more accurate than floats" — Stephen Lindstrom, LLNL

Challenge: Invert a Hilbert Matrix Numerically

In least-squares curve fitting, n-by-n Hilbert matrices \mathbf{H}_n arise

They're *brutally* ill-conditioned (nearly singular). This one has a condition number of $\sim 5 \times 10^5$. The exact inverse is all integers.

$$\mathbf{H}_{5} = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 & 1/5 \\ 1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\ 1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\ 1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\ 1/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{bmatrix} \quad h_{i,j} = \frac{1}{i+j-1}$$

$$h_{i,j} = \frac{1}{i+j-1}$$

Scale both sides by $5 \times 7 \times 9 = 315$ so the matrix can be expressed exactly by both floats and posits.

$$315 \cdot \mathbf{H}_5 = \begin{bmatrix} 315. & 157.5 & 105. & 78.75 & 63. \\ 157.5 & 105. & 78.75 & 63. & 52.5 \\ 105. & 78.75 & 63. & 52.5 & 45. \\ 78.75 & 63. & 52.5 & 45. & 39.375 \\ 63. & 52.5 & 45. & 39.375 & 35. \end{bmatrix}$$

Let's try 32-bit IEEE floats, and then 32-bit posits.

Use LDL^T decomposition

Float result has worst-case accuracy of only 3.7 decimals correct:

$$\mathsf{Float}\,H_5^{-1} = \begin{bmatrix} 25.\,0056\,\cdots\, -300.\,100\,\cdots\, & 1050.\,42\,\cdots\, & -1400.\,62\,\cdots\, & 630.\,30\,\cdots \\ -300.\,100\,\cdots\, & 4801.\,79\,\cdots\, & -18907.\,6\,\cdots\, & 26891.\,3\,\cdots\, & -12605.\,4\,\cdots \\ 1050.\,42\,\cdots\, & -18907.\,6\,\cdots\, & 79411.\,9\,\cdots\, & -117647.\,\cdots\, & 56722.\,9\,\cdots \\ -1400.\,62\,\cdots\, & 26891.\,3\,\cdots\, & -117647.\,\cdots\, & 179270.\,\cdots\, & -88234.\,1\,\cdots \\ 630.\,30\,\cdots\, & -12605.\,4\,\cdots\, & 56722.\,9\,\cdots\, & -88234.\,1\,\cdots\, & 44116.\,5\,\cdots \end{bmatrix}$$

Worst-case posit accuracy is 6.3 decimals, over 400 times as accurate:

$$\text{Posit H}_5^{-1} = \begin{bmatrix} 24.999994\cdots & -299.99992\cdots & 1049.9998\cdots & -1400.00003\cdots & 630.0001\cdots \\ -299.99992\cdots & 4799.9993\cdots & -18900.0009\cdots & 26880.007\cdots & -12600.005\cdots \\ 1049.9998\cdots & -18900.0009\cdots & 79380.02\cdots & -117600.06\cdots & 56700.04\cdots \\ -1400.00003\cdots & 26880.007\cdots & -117600.06\cdots & 179200.1\cdots & -88200.08\cdots \\ 630.0001\cdots & -12600.005\cdots & 56700.04\cdots & -88200.08\cdots & 44100.04\cdots \end{bmatrix}$$

The posit advantage typically far exceeds what you'd expect from having a few extra bits in the fraction (27 bits versus 23 bits, here)

But posits have a secret weapon, the quire

Compute the posit inverse times H_5 exactly, using the quire. Compare with the identity matrix (i.e., compute the *residual*), and use that as a correction to the original calculation:

Quire-corrected Posit
$$H_5^{-1} = \begin{bmatrix} 25 & -300 & 1050 & -1400 & 630 \\ -300 & 4800 & -18900 & 26880 & -12600 \\ 1050 & -18900 & 79380 & -117600 & 56700 \\ -1400 & 26880 & -117600 & 179200 & -88200 \\ 630 & -12600 & 56700 & -88200 & 44100 \end{bmatrix}$$

Worst-case error is... zero. There isn't any error. That's the exact inverse.

Floats cannot do this, even using double-precision.

An astonishing technique for maximum accuracy

Any expression using $+ - \times /$ can be written as Lx = b where L is lower triangular and the last x_n is the desired calculation. Example:

$$f = (a + b) \times c - d / e$$

Solving for x using the quire lets us evaluate $f = x_6$ correctly rounded!

The quire allows "Karlsruhe Accurate Arithmetic." This removes most of the need for 64-bit format.

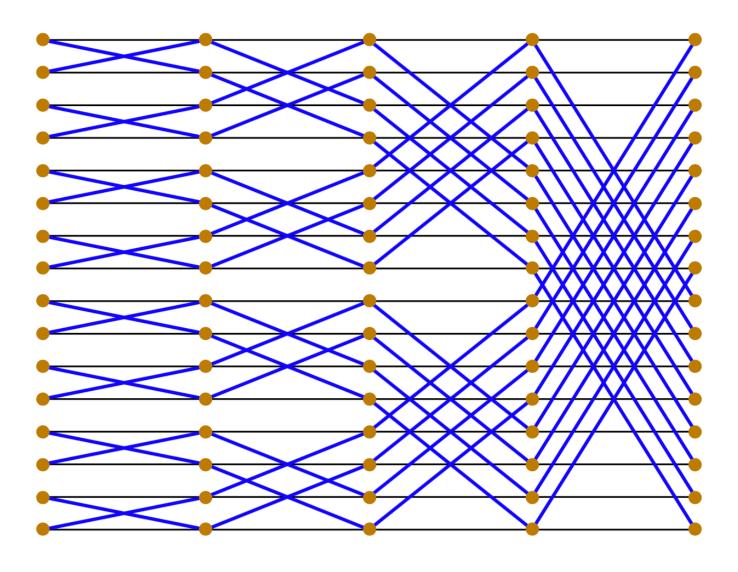
Ulrich Kulisch

- Great for polynomials, even badlyconditioned ones
- Can be done automatically by the compiler.
- "XSC" languages apply this technique, but not to reduce data size.
- Idea: Let user **mark** the variables that need guaranteed accuracy, instead of applying everywhere.
- 32-bit posit answers can be more accurate than 64-bit float answers.

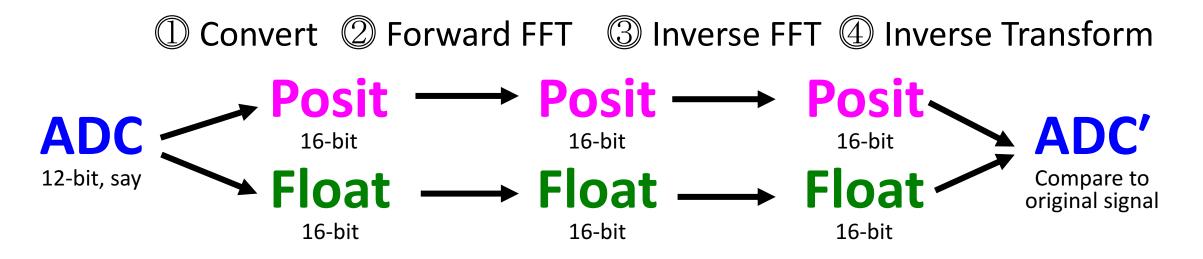
Posits for Fast Fourier Transforms (FFTs)

- FFTs are very communication bound.
- Most efforts (like FFTW) focus on lowest op count.
- More potent

 approach: reduce
 the data size by
 using posit
 format

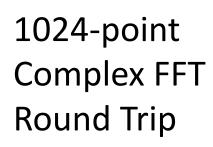


Methodology: Measure "round trip" error for 1024-point and 4096-point complex FFTs.

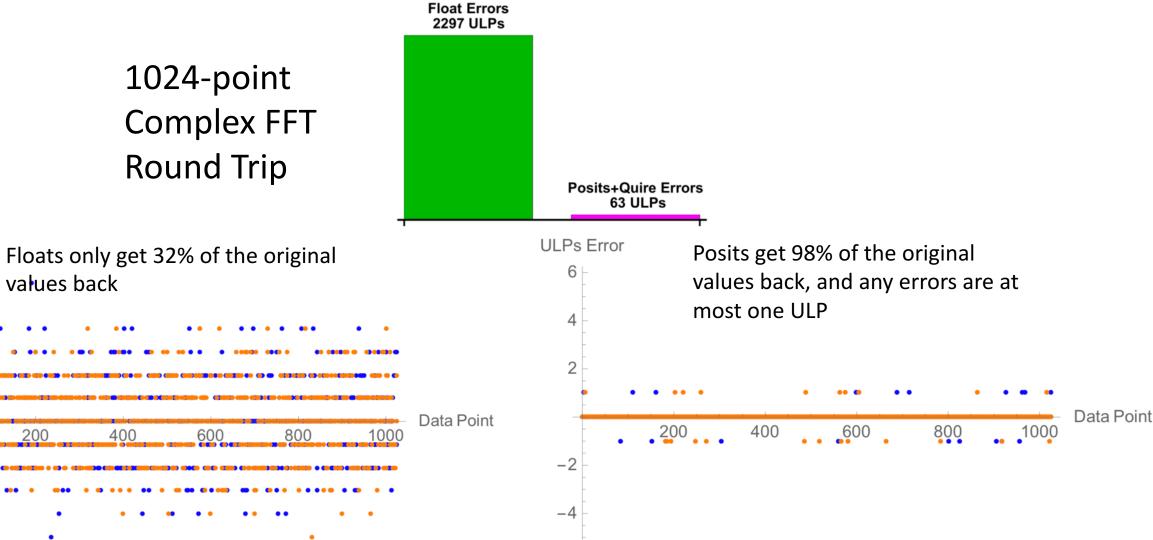


If a format can transform Analog-to-Digital Converter (ADC) signals forward and backward without loss, there is no need for higher precision.

16-bit posits can do this; 16-bit floats cannot.



values back

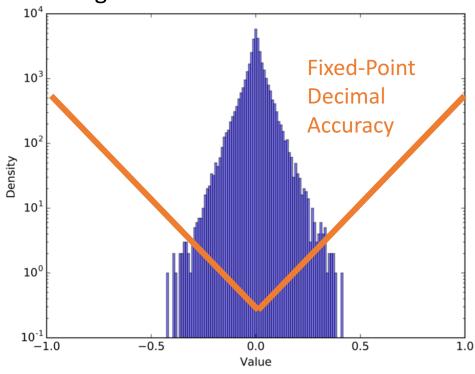


Neural Networks, both Training and Inference

Cifar-10, ConvNet study by RIT (simple 5-layer net, preliminary)

Number of bits	Posit Accuracy	Float Accuracy
8	67.64%	67.93%
7	67.52%	67.37%
6	63.77%	46.23%
5	31.18%	44.85%

Float32 accuracy is 68.45%. 8-bit Float used 3 exponent bits. Quire was not used for posit results.

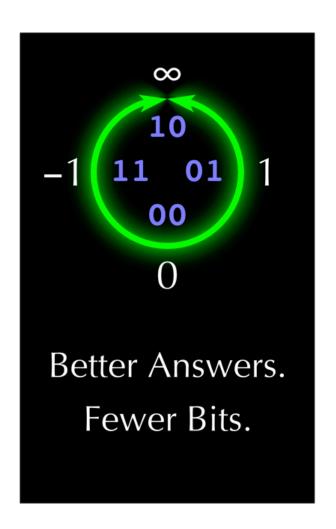


From "Deep Positron: A Deep Neural Network Using the Posit Number System," D. Kudithipudi, J. Gustafson, H. Langroudi, Z. Carmichael

This shows why fixed-point is **not** the best choice.

Summary

- Posits can fix float shortcomings, for AI and HPC:
 - Taper the accuracy for more info-per-bit.
 - Simplify exceptions, rounding, unused features
 - Match dynamic range to application needs
 - Make the exact dot product practical
 - Restore associative, distributive laws
 - Make calculations bitwise-reproducible
- Faster; reduces communication costs
- More accurate, especially if the quire is used
- Lower energy and power
- Less chip area



End of Advanced Posit Tutorial Lecture