
Posits:
the good, the bad and the ugly

Florent de Dinechin
Luc Forget Jean-Michel Muller
Yohann Uguen

Posits: the good that we all know

Accuracy on large/small numbers is traded for accuracy “around 1”.

Sum of small terms with result “around 1”

Alignment of significands:

+
+
+
+
=

20

posit16

+
+
+
+
=

20

float16

In this case, floats are accurate in vain.
The zone around 1 (“golden zone”) is quite large.

And then you have the quire...
But really, no need of a quire for posits to beat floats.

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 2

Posits: the good that we all know

Accuracy on large/small numbers is traded for accuracy “around 1”.

Sum of small terms with result “around 1”

Alignment of significands:

+
+
+
+
=

20

posit16

+
+
+
+
=

20

float16

In this case, floats are accurate in vain.
The zone around 1 (“golden zone”) is quite large.

And then you have the quire...
But really, no need of a quire for posits to beat floats.

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 2

More good will follow

We come in peace.

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 3

Motivation by intimidation (1)

In my other life I implement elementary functions.

Simplified sketch of a floating-point exponential

(code in red, the rest is explanations)

1. Compute the integer E ≈ bX/ log(2)e
(the tentative result exponent)

2. Compute the float Y ≈ X − E × log(2)

(a reduced argument in the interval I ≈ [− log(2)
2 , log(2)2])

Remark that
Y ≈ X − E × log(2) can be rewritten eX ≈ 2EeY .

3. Evaluate a polynomial Z ≈ P(Y)
where the polynomial P is a good approximation of eY on I

4. Construct a float of value S = 2E

5. Return R = S × Z ≈ eX .

How does all this translate to posits?
F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 4

Motivation (2)

the computation S = 2E × Z was exact in FP.
No longer in posits. Workaround?

Y ≈ X − E × log(2) is a cancellation by construction.
An evil?

No, a blessing.

A subtraction that cancels is exact.

3.14159− 3.14123 = 0.00036 = 3.60000 · 10−4

No rounding error here.

Cody and Waite argument reduction trick

A very accurate computation of Y ≈ X − E × log(2),
based on exact-by-construction floating-point subtractions and
multiplications.

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 5

Motivation (2)

the computation S = 2E × Z was exact in FP.
No longer in posits. Workaround?

Y ≈ X − E × log(2) is a cancellation by construction.
An evil? No, a blessing.

A subtraction that cancels is exact.

3.14159− 3.14123 = 0.00036 = 3.60000 · 10−4

No rounding error here.

Cody and Waite argument reduction trick

A very accurate computation of Y ≈ X − E × log(2),
based on exact-by-construction floating-point subtractions and
multiplications.

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 5

Motivation (2)

the computation S = 2E × Z was exact in FP.
No longer in posits. Workaround?

Y ≈ X − E × log(2) is a cancellation by construction.
An evil? No, a blessing.

A subtraction that cancels is exact.

3.14159− 3.14123 = 0.00036 = 3.60000 · 10−4

No rounding error here.

Cody and Waite argument reduction trick

A very accurate computation of Y ≈ X − E × log(2),
based on exact-by-construction floating-point subtractions and
multiplications.

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 5

Motivation (3)

So, can we use such tricks with posits?

Extended precision needed

... for a correctly-rounded elementary function

always: a few bits more than the target precision

rarely: 2-3 times more than the target precision

Extended precision? That’s the quire, right?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 6

Motivation (3)

So, can we use such tricks with posits?

Extended precision needed

... for a correctly-rounded elementary function

always: a few bits more than the target precision

rarely: 2-3 times more than the target precision

Extended precision? That’s the quire, right?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 6

Motivation (3)

So, can we use such tricks with posits?

Extended precision needed

... for a correctly-rounded elementary function

always: a few bits more than the target precision

rarely: 2-3 times more than the target precision

Extended precision? That’s the quire, right?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 6

The quire: A naive architect’s point of view

Operation on the quire == operation on wq bits

range quire parameters

(min,max) wq wl wr

Posit8, es=0 [2−6, 26] 32 16 12

Posit16, es=1 [2−28, 228] 128 64 72

Posit32, es=2 [2−120, 2120] 512 256 332

Posit64, es=3 [2−496, 2496] 2048 1024 1429

Latency of quire-to-posit conversion (amortized for large sums):

leading zero count on wl bits

wide OR on wr bits for rounding

For our limited extended precision: cheaper alternatives?

this paper: what works and what doesn’t

future work: a quantitative assessment (i.e. which is cheaper)

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 7

The quire: A naive architect’s point of view

Operation on the quire == operation on wq bits

range quire parameters

(min,max) wq wl wr

Posit8, es=0 [2−6, 26] 32 16 12

Posit16, es=1 [2−28, 228] 128 64 72

Posit32, es=2 [2−120, 2120] 512 256 332

Posit64, es=3 [2−496, 2496] 2048 1024 1429

Latency of quire-to-posit conversion (amortized for large sums):

leading zero count on wl bits

wide OR on wr bits for rounding

For our limited extended precision: cheaper alternatives?

this paper: what works and what doesn’t

future work: a quantitative assessment (i.e. which is cheaper)

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 7

Posits: the good that you learn in this paper (1)

Boring theorems or conjectures like:

Conjecture

The rounding error in the addition of two posits of same format is a
posit of the same format, except in the “twilight zone”.

(verified by exhaustive test on Posit8 and Posit16)

Why is this useful?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 8

Posits: the good that you learn in this paper (1)

Boring theorems or conjectures like:

Conjecture

The rounding error in the addition of two posits of same format is a
posit of the same format, except in the “twilight zone”.

(verified by exhaustive test on Posit8 and Posit16)

Why is this useful?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 8

Posits: the good that you learn in this paper (2)

Why is this useful?
Because then we can (hopefully) compute it as a posit:

FastTwoSum

def FastTwoSum(a, b):
s = a + b
β = s - a
t = b - β

return s, t

Yet another lemma

If neither a nor b belongs to the twilight zone, and |a| > |b|,
then the posits s and t computed by the FastTwoSum sequence of
posit operations verify s+t = a+b exactly.

Cheap (?) doubled precision?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 9

Posits: the good that you learn in this paper (2)

Why is this useful?
Because then we can (hopefully) compute it as a posit:

FastTwoSum

def FastTwoSum(a, b):
s = a + b
β = s - a
t = b - β

return s, t

Yet another lemma

If neither a nor b belongs to the twilight zone, and |a| > |b|,
then the posits s and t computed by the FastTwoSum sequence of
posit operations verify s+t = a+b exactly.

Cheap (?) doubled precision?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 9

Posits: the good that you learn in this paper (2)

Another very useful property:

Don’t call me Sterbenz Lemma

For any two PositN of the same format a and b, where a and b are
different from NaR,

a

2
≤ b ≤ 2a =⇒ a	 b = a− b .

So what again?
It will help compute Y ≈ X − E × log(2)

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 10

The bad (1)

Multiplication-related lemmas and tricks that work with floats
don’t work with posits.

Multiplications by powers of two are not exact.

The error of the product of two posits is not always a posit.

...

It will make elementary function implementation more challenging...

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 11

The bad (2): Beware of scale

Sum of small terms with a large result

Alignment of significands:

+
+
+
+
=

211 20

posit16

+
+
+
+
=

211

float16

Floats still accurate in vain, but posits even more so...

Posits cannot represent the result accurately
even if the summation is performed in the quire.

float+quire > posit+quire?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 12

Still, Posit16 arguably better than Float16

−2
8

−2
4

−2
0

−1
6

−1
2 −8 −4 0 4 8 12 16 20 24 28

0

2

4

6

8

10

12

14

binade (exponent)

−
lo

g
2
(ε

)

fp16
posit16

Larger range for large numbers

(for small numbers, range is similar and accuracy lower)

Golden zone (better than floats) between 1/64 and 64

Subnormal-like behaviour outside the golden zone

but so do the floats

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 13

Posit32: don’t call me subnormal

−1
40

−1
20

−1
00 −8
0

−6
0

−4
0

−2
0 0 20 40 60 80 10
0

12
0

0

10

20

30

binade (exponent)

−
lo

g
2
(ε

)

fp32
posit32

c c2 NAh ek

Between exponents -20 and 20, the golden zone
very large : 12 orders of magnitude, about 10−6 to 106

where posits are always more accurate than floats
(and where most of the posits are concentrated)

Outside of the golden zone, (((((hhhhhsubnormal tapered accuracy

Unfortunately, physics likes to live out of the golden zone
https://en.wikipedia.org/wiki/International_System_of_Units

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 14

https://en.wikipedia.org/wiki/International_System_of_Units

Posit32: don’t call me subnormal

−1
40

−1
20

−1
00 −8
0

−6
0

−4
0

−2
0 0 20 40 60 80 10
0

12
0

0

10

20

30

binade (exponent)

−
lo

g
2
(ε

)

fp32
posit32

c c2 NAh ek

Between exponents -20 and 20, the golden zone
very large : 12 orders of magnitude, about 10−6 to 106

where posits are always more accurate than floats
(and where most of the posits are concentrated)

Outside of the golden zone, (((((hhhhhsubnormal tapered accuracy

Unfortunately, physics likes to live out of the golden zone
https://en.wikipedia.org/wiki/International_System_of_Units

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 14

https://en.wikipedia.org/wiki/International_System_of_Units

The ugly (1): very large and very small

Constants that define the International System of Units:

Planck constant h 6.626070150 · 10−34

Posit32 value ≈ 7.7 · 10−34

FP32 value ≈ 6.626070179 · 10−34

Avogadro number NA 6.02214076 · 1023

Posit32 value ≈ 6.021 · 1023

FP32 value ≈ 6.0221406 · 1023

Speed of light c 299792458
Posit32 value 299792384

FP32 value 299792448
charge of e− 1.602176634 · 10−19

Posit32 value ≈ 1.6022 · 10−19

FP32 value ≈ 1.60217659 · 10−19

Boltzmann constant k 1.380649 · 10−23

Posit32 value ≈ 1.3803 · 10−23

FP32 value ≈ 1.1.38064905 · 10−23

https://en.wikipedia.org/wiki/International_System_of_Units

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 15

https://en.wikipedia.org/wiki/International_System_of_Units

The ugly (2): multiplicative cancellation

×
=

20

	 The result looks accurate (it is in the golden zone),
but it is no more accurate than the inputs

⊕ (on the figure) the multiplication is exact.

Two equations you may have heard of:

e = mc2

e = hν

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 16

Is there a place for Posit64?

−1
,0

00
−9

00
−8

00
−7

00
−6

00
−5

00
−4

00
−3

00
−2

00
−1

00 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

0

10

20

30

40

50

60

binade (exponent)

−
lo

g
2
(ε

)

fp64
posit64

c c2NA
ekh

Sure, the golden zone is even larger
28 orders of magnitude should be enough for anybody
even OK for physics (all constants defined with < 10 decimal digits)

range less than half of the float64 range
Will somebody complain? Probably not the physicists.

Gain in the iceberg tip: 17 decimal digits instead of 15

Do we need them? Physics units are defined with < 10 decimal digits...

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 17

A transitory proposal for general-purpose processors:
embrace and extend floating-point

keep FP32 unit and registers, use posit16 as a memory format

keep FP64 unit and registers, use posit32 as a memory format

in the paper: latency and resource consumption are small

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 18

Summary

8 bits: are floats really the competition ?

Logarithm Number System (Jeff Johnson)
Tabulation allows for completely bizarre and ad-hoc formats

16 bits: Posit16 better than float16

with or without a hardware quire?
state of the art in float16 is to use an exact accumulator (N. Brunie)

32 and 64 bits: beware of extrapolation from smaller formats

Posits have smaller range
Posits have variable accuracy
The cost of a hardware quire begins to show (latency counts, too)

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 19

Summary

8 bits: are floats really the competition ?

Logarithm Number System (Jeff Johnson)
Tabulation allows for completely bizarre and ad-hoc formats

16 bits: Posit16 better than float16

with or without a hardware quire?
state of the art in float16 is to use an exact accumulator (N. Brunie)

32 and 64 bits: beware of extrapolation from smaller formats

Posits have smaller range
Posits have variable accuracy
The cost of a hardware quire begins to show (latency counts, too)

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 19

Summary

8 bits: are floats really the competition ?

Logarithm Number System (Jeff Johnson)
Tabulation allows for completely bizarre and ad-hoc formats

16 bits: Posit16 better than float16

with or without a hardware quire?
state of the art in float16 is to use an exact accumulator (N. Brunie)

32 and 64 bits: beware of extrapolation from smaller formats

Posits have smaller range
Posits have variable accuracy
The cost of a hardware quire begins to show (latency counts, too)

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 19

Conclusion: challenges ahead

A rebuild of error analysis is needed

... and I’m not saying I know how to do it
but I feel the very notion of a numerical library depends on it

Posits force programmers to think about the scale of their numbers

This may actually be a Good Thing
(“educate programmers” versus “protect programmers”)

Proofs of low-level properties: beyond exhaustive test

need to embark these formal proof people
for proofs that scale, but more importantly, for insight

Some properties are lost:

are they important?
how to get around them?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 20

Conclusion: challenges ahead (2)

Write some complete elementary function code

Write a complete hardware posit unit

including good quire hardware
in progress

This will allow quantitative assessment : is this quire-less trick efficient?

But then, another big-picture question

posit+quire versus float+quire ?

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 21

Thank you for your attention

Questions?
(otherwise I have controversial backup slides)

F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen Posits: the good, the bad and the ugly 22

