
1

An Accelerator for Posit Arithmetic 
Targeting Posit Level 1 BLAS 
Routines and Pair-HMM

Laurens van Dam, Johan Peltenburg*, Zaid Al-Ars, H. Peter Hofstee

CoNGA'19: Conference for Next Generation Arithmetic 2019
Singapore, March 14, 2019



2

Credits
• Paper based on MSc thesis [1] work by Laurens van Dam.
• Computer Engineering Lab @ TU Delft, Netherlands.
• Special thanks to Jinho Lee @ IBM.

[1]	Enabling	High	Performance	Posit	Arithmetic	Applications	Using	Hardware	Acceleration,	L.	van	Dam,	Online:	http://resolver.tudelft.nl/uuid:943f302f-7667-4d88-b225-3cd0cd7cf37c



3

Outline
• Posit Arithmetic in Hardware
• Posit Vector Arithmetic Accelerator
• Pair Hidden Markov Model Accelerator
• Conclusion



4

Posit Number Format [1]
• Configurable total and exponent bits

nbits

value = −1 # ⋅ (2'())+,-./,⋅ 2,0123,34 ⋅ 1. fraction

Width:

Field:

[2] John L. Gustafson. 2017. Posit Arithmetic. https://posithub.org/docs/Posits4.pdf



5

Posit Arithmetic in Hardware
• Three stages

Extract Operations NormalizePosit

ExtractPosit

Posit

Unrounded fraction



6

Posit Arithmetic in Hardware
• Three stages

1. Extraction: extract fields from posit words

Extract Operations NormalizePosit

ExtractPosit

Posit

Unrounded fraction



7

Posit Arithmetic in Hardware
• Three stages

1. Extraction: extract fields from posit words
2. Operation: perform calculation(s) on extracted posit(s)

• Without intermediate rounding: minimize error

Extract Operations NormalizePosit

ExtractPosit

Posit

Unrounded fraction



8

Posit Arithmetic in Hardware
• Three stages

1. Extraction: extract fields from posit words
2. Operation: perform calculation(s) on extracted posit(s)

• Without intermediate rounding: minimize error
3. Normalization: pack result components into posit word

Extract Operations NormalizePosit

ExtractPosit

Posit

Unrounded fraction



9

Extractor

Posit
ExtractInput word

Sign
Scale

Fraction
Infinite
Zero

S Regime Exponent Fraction

• Obtain all fields
– Detect size of regime (kbits)
– Shift fields accordingly

• Signal two special cases:
– Infinite
– Zero



10

Adder / multiplier

Posit
Adder/Multiplier

Result fields

Done

Clock
Start

Posit 1 fields

Posit 2 fields

• 4- or 8-stage pipelined adder.
• 4-stage pipelined multiplier.



11

Accumulator

Posit
Accumulate

Result fields

Done

Clock
Reset
Start

Posit fields
Posit Adder

Accumulated
sign, scale, fraction

Input posit

Accumulated
result

• Accumulate input without rounding



12

Normalizer

Posit
Normalize

Result word
Infinite
Zero

Posit fields

• Rounding scheme: round-to-nearest, tie-to-even.



13

Outline
• Posit Arithmetic in Hardware
• Posit Vector Arithmetic Accelerator
• Pair Hidden Markov Model Accelerator
• Conclusion



14

Posit Vector Arithmetic Accelerator
• Accelerate Level 1 Basic Linear Algebra Subprograms (BLAS)

– Vector addition, subtraction, multiplication
– Dot product
– Vector sum

• Optimized for
– Performance
– Decimal accuracy

• Uses Apache Arrow data format for cross-language support
– Arrow interfaces exist for many languages:

C, C++, C#, Go, Java, JavaScript, MATLAB, Python, R, Ruby, Rust



15

Schematic overview
One or two input vectors
(represented as Arrow Arrays)

Input 1

posit

posit

⋮

posit

posit

Input 2

posit

posit

⋮

posit

posit

posit

Dot product,
Sum

Addition,
Multiplication

Either one output vector 
(elementwise addition / multiplication)
Or one posit 
(dot product, element sum)

Result

posit

posit

⋮

posit

posit



16

Hardware Architecture for Vector Arithmetic

Multiply

Add

Operation

Extract

Extract

Accumulate

Result

AggregateColumn Reader
(vector 1)

Column Reader
(vector 2)

Column Writer
(result vector)

A
pa

ch
e 

A
rr

ow
 (C

A
PI

 S
N

A
P)

Dot product / Vector sum(Scalar)
Multiplication

(Scalar) Addition



17

Hardware Architecture for Vector Arithmetic

Multiply

Add

Operation

Extract

Extract

Accumulate

Result

AggregateColumn Reader
(vector 1)

Column Reader
(vector 2)

Column Writer
(result vector)

A
pa

ch
e 

A
rr

ow
 (C

A
PI

 S
N

A
P)

Dot product / Vector sum(Scalar)
Multiplication

(Scalar) Addition

[3]	Fletcher:	A	framework	to	integrate	FPGA	accelerators	with	Apache	Arrow.	Online	:	https://github.com/johanpel/fletcher



18

Hardware Architecture for Vector Arithmetic

Multiply

Add

Operation

Extract

Extract

Accumulate

Result

AggregateColumn Reader
(vector 1)

Column Reader
(vector 2)

Column Writer
(result vector)

A
pa

ch
e 

A
rr

ow
 (C

A
PI

 S
N

A
P)

Dot product / Vector sum(Scalar)
Multiplication

(Scalar) Addition



19

Hardware Architecture for Vector Arithmetic

Multiply

Add

Operation

Extract

Extract

Accumulate

Result

AggregateColumn Reader
(vector 1)

Column Reader
(vector 2)

Column Writer
(result vector)

A
pa

ch
e 

A
rr

ow
 (C

A
PI

 S
N

A
P)

Dot product / Vector sum(Scalar)
Multiplication

(Scalar) Addition



20

Hardware Architecture for Vector Arithmetic

Multiply

Add

Operation

Extract

Extract

Accumulate

Result

AggregateColumn Reader
(vector 1)

Column Reader
(vector 2)

Column Writer
(result vector)

A
pa

ch
e 

A
rr

ow
 (C

A
PI

 S
N

A
P)

Dot product / Vector sum(Scalar)
Multiplication

(Scalar) Addition

[3]	Fletcher:	A	framework	to	integrate	FPGA	accelerators	with	Apache	Arrow.	J.	Peltenburg et	al.,	Online: https://github.com/johanpel/fletcher



21

Vector Arithmetic Accelerator Performance
Speedup and throughput in MPOPS*

(*) MPOPS = Mega Posit Operations Per Second 

10
1

10
2

10
3

10
4

10
5

Vector length

0

2000

4000

6000

8000

10000

12000

Sp
ee

d
u

p
 (

h
w

 v
s.

 s
w

)

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t 
(M

P
O

P
S)

Dot product
Vector sum
Vector add
Vector add (scalar)
Vector subtract
Vector subtract (scalar)
Vector multiply
Vector multiply (scalar)
Throughput



22

Vector Arithmetic Accelerator Performance
Speedup and throughput in MPOPS* (BLAS library)

(*) MPOPS = Mega Posit Operations Per Second 

10
1

10
2

10
3

10
4

10
5

Vector length

0

1000

2000

3000

4000

5000

Sp
ee

d
u

p
 (

h
w

 v
s.

 s
w

)

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t 
(M

P
O

P
S)

Dot product
Vector sum
Vector add
Vector add (scalar)
Vector subtract
Vector subtract (scalar)
Vector multiply
Vector multiply (scalar)
Throughput



23

Vector Arithmetic Accelerator Accuracy
• Increase in accuracy when 

using posit instead of float?

• Test case: pseudo randomly 
generated elements

– Float and posit representation 
might not be of equal accuracy!

– Re-generate until float and posit 
representation match

• Software posit and float 
calculation

– C++ Matrix Template Library 
(MTL)

10
1

10
2

10
3

10
4

10
5

Vector length

6

7

8

9

10

11

D
ec

im
al

 a
cc

u
ra

cy

posit (hw)
posit (sw)
float

Decimal	accuracy	of	dot	product	for	posit<nbits=32,	es=2>
(similar	results	for	<nbits=32,	es=3)



24

Vector Arithmetic Accelerator Summary
• Modular design

– Can be almost drop-in replace float units in existing applications.

• High speedup compared to software
– Dependent on input vector lengths
– Dot product: ~3000x for input length of 10@ elements

• Improved decimal accuracy
– Dot product:

• Over float : +2 decimals of accuracy
• Over posit software : +1 decimal of accuracy



25

Outline
• Introduction
• Posit Arithmetic in Hardware
• Posit Vector Arithmetic Accelerator
• Pair Hidden Markov Model Accelerator
• Conclusion



26

Pair-HMM
• Used in genomics analysis platforms (e.g. 

GATK)
• PairHMM Forward Algorithm
• Sparks our interest because:

– Based on existing PairHMM accelerator [4].
– Bioinformaticians value accuracy a lot.
– E.g. in some basic implementations of 

PairHMM, calculations are done in float32 
(to obtain higher throughput than float64)

– If the output is in a float range that is 
inaccurate, forward algorithm is performed 
again using float64!

38 CHAPTER 3. APPLICATIONS IN BIOINFORMATICS

x G T A T G A - -
y - - A T G A T A
z Ix Ix M M M M Iy Iy

Table 3.1: Example sequence observations x and y and their underlying sequence of hid-
den states z for the pair-HMM model illustrated in Fig. 3.1.

An example of a simple HMM is the observation of a coin toss result where the toss per-
formance itself is not observable. Hence, a sequence of coin tossing experiments results
in a set of outcome observations of heads and tails [22]. The previously described concept
of HMMs can again be extended by having multiple observations instead of only a sin-
gle observation. The resulting Pair Hidden Markov Model (PHMM) can be used for the
generation of probability distributions for sequences of pairs of observations. This type
of HMM is particularly useful for finding alignments between sequences, for example in
DNA analysis when matching DNA reads with a specific haplotype sequence [23].

An example of a pair-HMM model is depicted in Fig. 3.1. This model consists of three
states (Ix, Iy, M). States Ix and Iy are able to insert an (unaligned) symbol in sequence x
and y respectively, while state M is able to insert an aligned symbol pair (xi, yi) in both
sequences x and y. In this example, a direct transition from state Ix to Iy and vice versa is
not possible.

Ix
✓

✏

Iy
�

⇣

M
↵

�

� �

⌘

�x y

Figure 3.1: A pair-HMM with 3 states. Symbols can be inserted into sequences x or y.
� and ⌘ are the probabilities of emitting symbol x and y respectively, while ↵ denotes
the probability of emitting two aligned symbols into sequences x and y. The remaining
symbols denote the state transition probabilities.

Let the hidden state sequence for this pair-HMM model be denoted by z. A one-to-
one relationship exists between z and the alignment of the two sequence observations x
and y. This can be illustrated as follows. Consider the two observed sequences x and y
and the underlying sequence of hidden states z depicted in Table 3.1. In this example,
symbol pairs (x3, y1), (x4, y2), (x5, y3) and (x6, y4) have been emitted by hidden state A,[4] J. Peltenburg, S. Ren, and Z. Al-Ars. 2016. Maximizing systolic array efciency to accelerate the PairHMM Forward Algorithm. In 2016 IEEE International Conference on Bioinformatics and Biomedicine 

(BIBM). 758–762. https://doi.org/10.1109/BIBM.2016.7822616



27

Pair-HMM in float and posit

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Initial constant (power of 2)

2

3

4

5

6

7

8

9

D
ec

im
al

 a
cc

u
ra

cy

posit<32, 2>
posit<32, 3>
float

• Scaling of probabilities used to prevent underflow.
• For posits, accuracy depends on chosen initial scaling constant.
• There is a range where posits perform better than floats.



28

Pair-HMM Top Level Architecture

Systolic
Array

Posit Extract

Posit Normalize

Column Reader
(reads)

Column Reader
(haplotypes)

Column Writer
(results)A

pa
ch

e 
A

rr
ow

 (C
A

PI
 S

N
A

P)

Probabilities

Base pairs

Base pairs

Result



29

Pair-HMM Systolic Array Architecture

Accumulator

HaplotypesRead

Score Ready

PE0 PE1 PE14 PE15

Systolic Array



30

Pair-HMM Posit Processing Element

β

γ

γ

δ

ε

ζ

η

Mi-1,j-1

Ixi-1,j-1

Iyi-1,j-1

Mi-1,j

Ixi-1,j

Mi,j-1

Iyi,j-1

α
Mi,j

θ
Ixi,j

υ
Iyi,j

(4)

(4)
+
(4)

+
(4) (4)

(4)
+
(8)

(4)

(4)

(4)

(4)

(4)
+
(8) (4)

(4)

PE PE PE …

• Per	PE,	data	path	
consists	of	four	
POPs	already.

• We	want	to	retain	
as	much	accuracy	
as	possible.



31

Pair-HMM Results - Performance

8 16 24 32 40 48 56
Haplotype length (Y)

0

2

4

6

8

10

Sp
ee

du
p 

(h
w

 v
s. 

sw
)

10 5

X = 8
X = 16
X = 24
X = 32
X = 40



32

Pair-HMM Results - Accuracy

8 16 24 32 40 48 56
Haplotype length (Y)

7

7.5

8

8.5

9

9.5
D

ec
im

al
 a

cc
ur

ac
y

X = 8 X = 16 X = 24 X = 32 X = 40

Decimal accuracy of pair-HMM for posit<32, 2>

posit (hw) posit (sw) float



33

Pair-HMM Summary
• Implementation of pair-HMM model accelerator with posits

• Performance
– Speedup of ~10B× for average input sequence lengths (X = 40, Y = 56)

• Decimal accuracy
– Compared to software posit: +0.5 decimals of accuracy (on average)
– Compared to software float: +0.75 decimals of accuracy



34

Conclusion
• Design and implementation of pipelined posit adders / multipliers targeting FPGA.

• Can be used at drop-in replacement for float units.

• High-accuracy accumulator.

• Applied in two accelerators:
– Vector arithmetic accelerator
– PairHMM accelerator
– Both increased accuracy
– Several orders of magnitude faster than CPU
– Need high POPS? No choice but to embrace FPGA accelerators!

• Integrates with Apache Arrow – usable in many programming languages.



35

References
[1] L.	van	Dam,	2018, Enabling	High	Performance	Posit	Arithmetic	Applications	Using	Hardware	Acceleration,

Online:	http://resolver.tudelft.nl/uuid:943f302f-7667-4d88-b225-3cd0cd7cf37c
[2]	 John	L.	Gustafson,	2017,	Posit	Arithmetic.	Online:	https://posithub.org/docs/Posits4.pdf
[3]	 J.	Peltenburg et	al,	2018,	Fletcher:	A	framework	to	integrate	FPGA	accelerators	with	Apache	Arrow,	

Online:	https://github.com/johanpel/fletcher
[4]	 J.	Peltenburg,	S.	Ren,	and	Z.	Al-Ars,	2016,	Maximizing	systolic	array	efciency	to	accelerate	the	PairHMM	

Forward	Algorithm.	In	2016	IEEE	International	Conference	on	Bioinformatics	and	Biomedicine	(BIBM).	
758–762.	https://doi.org/10.1109/BIBM.2016.7822616



36

An Accelerator for Posit Arithmetic 
Targeting Posit Level 1 BLAS 
Routines and Pair-HMM

Laurens van Dam, Johan Peltenburg*, Zaid Al-Ars, H. Peter Hofstee

CoNGA'19: Conference for Next Generation Arithmetic 2019
Singapore, March 14, 2019



37

Backup slides



38

Posit Vector Arithmetic Accelerator
Decimal accuracy of dot product for posit<32, 3>

10
1

10
2

10
3

10
4

10
5

Vector length

6

7

8

9

10

11

D
ec

im
al

 a
cc

u
ra

cy

posit (hw)
posit (sw)
float



39

Pair-HMM Posit Accelerator

• CAPI: Coherent Accelerator Processor Interface



40

Measure of Decimal Accuracy

decimal	accuracy = − logMN logMN
𝑋P
𝑋

𝑋P = measured	value
𝑋 = true	(reference)	value	



41

Pair-HMM Posit Accelerator: final result

Posit Wide
Accumulator

(16-cycle)

Posit Wide
Accumulator

(16-cycle)

Posit Adder
(8-cycle)

Last PE
result bus

Reset

M

Ix
Accumulated

result



42

Pair-HMM parallel architecture

Pair-HMM
Core

Pair-HMM
Core

Pair-HMM
Core

Pair-HMM
Core

Read/Write AXI Bus Arbiter

CAPI SNAP

Apache Arrow

Ba
tc

h 
of

fs
et

s
Bu

ffe
r a

dd
re

ss
es

 MMIO

Host (software)

Accelerator



43

Pair-HMM Posit Accelerator

8 16 24 32 40 48 56
Haplotype length (Y)

0

200

400

600

800

1000

Pe
rf

or
m

an
ce

 (M
CU

PS
) X = 8

X = 16
X = 24
X = 32
X = 40

Throughput
• CUPS : Cell Updates Per Second



44

Pair-HMM Posit Accelerator

Decimal accuracy of pair-HMM for posit<32, 3>

8 16 24 32 40 48 56
Haplotype length (Y)

7

7.5

8

8.5

9

9.5

D
ec

im
al

 a
cc

ur
ac

y
X = 8 X = 16 X = 24 X = 32 X = 40

8 1 6 2 4 3 2 4 0 4 8 56
Haplotype length (Y)

7.2
7.4
7.6
7.8

8
8.2
8.4
8.6
8.8

9

D
ec

im
al

 a
cc

ur
ac

y
posit (hw) posit (sw) float



45

Test setup
• Posit Vector Arithmetic Accelerator

– Intel Core i5-2550K, 8 threads, 16 GB RAM
– FPGA: Xilinx UltraScale XCKU060

• Pair-HMM Accelerator
– IBM Power System S822LC, 2x 10-core CPU
– Xilinx UltraScale XCKU060



46

Vector area consumption & power estimation
Xilinx	UltraScale XCKU060



47

PairHMM area consumption & power estimation
Xilinx	UltraScale XCKU060


