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Posit Number Format [1]
• Configurable total and exponent bits

nbits

value = −1 # ⋅ (2'())+,-./,⋅ 2,0123,34 ⋅ 1. fraction

Width:

Field:

[2] John L. Gustafson. 2017. Posit Arithmetic. https://posithub.org/docs/Posits4.pdf
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Posit Arithmetic in Hardware
• Three stages

Extract Operations NormalizePosit

ExtractPosit

Posit

Unrounded fraction
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Posit Arithmetic in Hardware
• Three stages

1. Extraction: extract fields from posit words

Extract Operations NormalizePosit
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Posit
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Posit Arithmetic in Hardware
• Three stages

1. Extraction: extract fields from posit words
2. Operation: perform calculation(s) on extracted posit(s)

• Without intermediate rounding: minimize error
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Posit Arithmetic in Hardware
• Three stages

1. Extraction: extract fields from posit words
2. Operation: perform calculation(s) on extracted posit(s)

• Without intermediate rounding: minimize error
3. Normalization: pack result components into posit word

Extract Operations NormalizePosit

ExtractPosit

Posit

Unrounded fraction
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Extractor

Posit
ExtractInput word

Sign
Scale

Fraction
Infinite
Zero

S Regime Exponent Fraction

• Obtain all fields
– Detect size of regime (kbits)
– Shift fields accordingly

• Signal two special cases:
– Infinite
– Zero
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Adder / multiplier

Posit
Adder/Multiplier

Result fields

Done

Clock
Start

Posit 1 fields

Posit 2 fields

• 4- or 8-stage pipelined adder.
• 4-stage pipelined multiplier.
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Accumulator
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result

• Accumulate input without rounding
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Normalizer

Posit
Normalize

Result word
Infinite
Zero

Posit fields

• Rounding scheme: round-to-nearest, tie-to-even.
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Outline
• Posit Arithmetic in Hardware
• Posit Vector Arithmetic Accelerator
• Pair Hidden Markov Model Accelerator
• Conclusion
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Posit Vector Arithmetic Accelerator
• Accelerate Level 1 Basic Linear Algebra Subprograms (BLAS)

– Vector addition, subtraction, multiplication
– Dot product
– Vector sum

• Optimized for
– Performance
– Decimal accuracy

• Uses Apache Arrow data format for cross-language support
– Arrow interfaces exist for many languages:

C, C++, C#, Go, Java, JavaScript, MATLAB, Python, R, Ruby, Rust
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Schematic overview
One or two input vectors
(represented as Arrow Arrays)
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⋮
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posit

posit

⋮

posit

posit

posit

Dot product,
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Addition,
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Either one output vector 
(elementwise addition / multiplication)
Or one posit 
(dot product, element sum)

Result
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posit

⋮

posit

posit
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Hardware Architecture for Vector Arithmetic
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Hardware Architecture for Vector Arithmetic
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[3]	Fletcher:	A	framework	to	integrate	FPGA	accelerators	with	Apache	Arrow.	Online	:	https://github.com/johanpel/fletcher
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Hardware Architecture for Vector Arithmetic
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Hardware Architecture for Vector Arithmetic
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Hardware Architecture for Vector Arithmetic
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[3]	Fletcher:	A	framework	to	integrate	FPGA	accelerators	with	Apache	Arrow.	J.	Peltenburg et	al.,	Online: https://github.com/johanpel/fletcher
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Vector Arithmetic Accelerator Performance
Speedup and throughput in MPOPS*

(*) MPOPS = Mega Posit Operations Per Second 
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Vector Arithmetic Accelerator Performance
Speedup and throughput in MPOPS* (BLAS library)

(*) MPOPS = Mega Posit Operations Per Second 
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Vector Arithmetic Accelerator Accuracy
• Increase in accuracy when 

using posit instead of float?

• Test case: pseudo randomly 
generated elements

– Float and posit representation 
might not be of equal accuracy!

– Re-generate until float and posit 
representation match

• Software posit and float 
calculation

– C++ Matrix Template Library 
(MTL)
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Vector Arithmetic Accelerator Summary
• Modular design

– Can be almost drop-in replace float units in existing applications.

• High speedup compared to software
– Dependent on input vector lengths
– Dot product: ~3000x for input length of 10@ elements

• Improved decimal accuracy
– Dot product:

• Over float : +2 decimals of accuracy
• Over posit software : +1 decimal of accuracy
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Outline
• Introduction
• Posit Arithmetic in Hardware
• Posit Vector Arithmetic Accelerator
• Pair Hidden Markov Model Accelerator
• Conclusion
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Pair-HMM
• Used in genomics analysis platforms (e.g. 

GATK)
• PairHMM Forward Algorithm
• Sparks our interest because:

– Based on existing PairHMM accelerator [4].
– Bioinformaticians value accuracy a lot.
– E.g. in some basic implementations of 

PairHMM, calculations are done in float32 
(to obtain higher throughput than float64)

– If the output is in a float range that is 
inaccurate, forward algorithm is performed 
again using float64!

38 CHAPTER 3. APPLICATIONS IN BIOINFORMATICS

x G T A T G A - -
y - - A T G A T A
z Ix Ix M M M M Iy Iy

Table 3.1: Example sequence observations x and y and their underlying sequence of hid-
den states z for the pair-HMM model illustrated in Fig. 3.1.

An example of a simple HMM is the observation of a coin toss result where the toss per-
formance itself is not observable. Hence, a sequence of coin tossing experiments results
in a set of outcome observations of heads and tails [22]. The previously described concept
of HMMs can again be extended by having multiple observations instead of only a sin-
gle observation. The resulting Pair Hidden Markov Model (PHMM) can be used for the
generation of probability distributions for sequences of pairs of observations. This type
of HMM is particularly useful for finding alignments between sequences, for example in
DNA analysis when matching DNA reads with a specific haplotype sequence [23].

An example of a pair-HMM model is depicted in Fig. 3.1. This model consists of three
states (Ix, Iy, M). States Ix and Iy are able to insert an (unaligned) symbol in sequence x
and y respectively, while state M is able to insert an aligned symbol pair (xi, yi) in both
sequences x and y. In this example, a direct transition from state Ix to Iy and vice versa is
not possible.

Ix
✓

✏

Iy
�

⇣

M
↵

�

� �

⌘

�x y

Figure 3.1: A pair-HMM with 3 states. Symbols can be inserted into sequences x or y.
� and ⌘ are the probabilities of emitting symbol x and y respectively, while ↵ denotes
the probability of emitting two aligned symbols into sequences x and y. The remaining
symbols denote the state transition probabilities.

Let the hidden state sequence for this pair-HMM model be denoted by z. A one-to-
one relationship exists between z and the alignment of the two sequence observations x
and y. This can be illustrated as follows. Consider the two observed sequences x and y
and the underlying sequence of hidden states z depicted in Table 3.1. In this example,
symbol pairs (x3, y1), (x4, y2), (x5, y3) and (x6, y4) have been emitted by hidden state A,[4] J. Peltenburg, S. Ren, and Z. Al-Ars. 2016. Maximizing systolic array efciency to accelerate the PairHMM Forward Algorithm. In 2016 IEEE International Conference on Bioinformatics and Biomedicine 

(BIBM). 758–762. https://doi.org/10.1109/BIBM.2016.7822616
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Pair-HMM in float and posit
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• Scaling of probabilities used to prevent underflow.
• For posits, accuracy depends on chosen initial scaling constant.
• There is a range where posits perform better than floats.
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Pair-HMM Top Level Architecture
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Pair-HMM Systolic Array Architecture

Accumulator

HaplotypesRead

Score Ready

PE0 PE1 PE14 PE15

Systolic Array
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Pair-HMM Posit Processing Element
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Pair-HMM Results - Performance
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Pair-HMM Results - Accuracy
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Pair-HMM Summary
• Implementation of pair-HMM model accelerator with posits

• Performance
– Speedup of ~10B× for average input sequence lengths (X = 40, Y = 56)

• Decimal accuracy
– Compared to software posit: +0.5 decimals of accuracy (on average)
– Compared to software float: +0.75 decimals of accuracy
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Conclusion
• Design and implementation of pipelined posit adders / multipliers targeting FPGA.

• Can be used at drop-in replacement for float units.

• High-accuracy accumulator.

• Applied in two accelerators:
– Vector arithmetic accelerator
– PairHMM accelerator
– Both increased accuracy
– Several orders of magnitude faster than CPU
– Need high POPS? No choice but to embrace FPGA accelerators!

• Integrates with Apache Arrow – usable in many programming languages.
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Backup slides



38

Posit Vector Arithmetic Accelerator
Decimal accuracy of dot product for posit<32, 3>
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Pair-HMM Posit Accelerator

• CAPI: Coherent Accelerator Processor Interface
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Measure of Decimal Accuracy

decimal	accuracy = − logMN logMN
𝑋P
𝑋

𝑋P = measured	value
𝑋 = true	(reference)	value	
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Pair-HMM Posit Accelerator: final result
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Pair-HMM parallel architecture
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Pair-HMM Posit Accelerator
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Pair-HMM Posit Accelerator

Decimal accuracy of pair-HMM for posit<32, 3>
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Test setup
• Posit Vector Arithmetic Accelerator

– Intel Core i5-2550K, 8 threads, 16 GB RAM
– FPGA: Xilinx UltraScale XCKU060

• Pair-HMM Accelerator
– IBM Power System S822LC, 2x 10-core CPU
– Xilinx UltraScale XCKU060
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Vector area consumption & power estimation
Xilinx	UltraScale XCKU060
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PairHMM area consumption & power estimation
Xilinx	UltraScale XCKU060


