

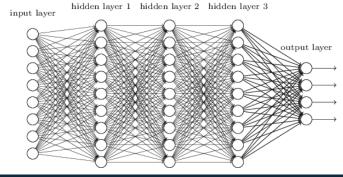
Performance-Efficiency Trade-off of Low-Precision Numerical Formats in Deep Neural Networks

Authors: Zachariah Carmichael, Hamed F. Langroudi, Char Khazanov, Jeffrey Lillie, John L. Gustafson, **Dhireesha Kudithipudi** Neuromorphic AI Lab, Rochester Institute of Technology, NY, USA

Background

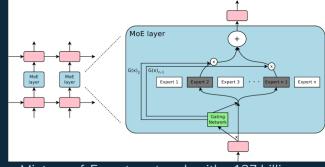
- Deep Neural Networks
- Al on Edge-Devices
- Posits

Deep Neural Networks (DNNs)



[14]

- Highly-parallel connectionist networks
- DNNs learn a nonlinear input-to-output function by minimizing an objective via gradient descent and backpropagation with labeled data (in general)
- Successfully applied to various domains: natural language processing, genomics, computer vision



Mixture-of-Experts network with >137 billion parameters (~548 GB memory with 32-bit floats) [2].

DNNs are Hungry

- Multiply-and-Accumulate (MAC) units ubiquitous across DNNs
- ♦ MAC operations consume compute resources
- Data & DNN parameters consume memory

Development

Deployment

Training
Evaluation
Tuning

Inference

How can DNNs be deployed **tractably** on edge devices without sacrificing **performance**?

x: 32-bit $x \to \phi(x)$ $\phi(x): \le 8-bit$ Quantization clip(x) and Clipping clip(x)

Quantization

- Linear & Nonlinear Quantization
 - On-device compute overhead
 - May require retraining
 - May require an increase in DNN parameters or hyperparameters [3]

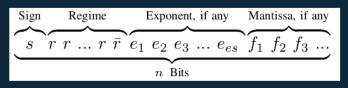
Direct Quantization

- No compute overhead
- Relies on natural distribution of numerical format for maintaining inference performance

There is a need for a fair comparison between low-precision numerical formats.

How do the natural distributions of numerical formats compare during low-precision DNN inference?

- Fixed-point
- Floating point
- Posit



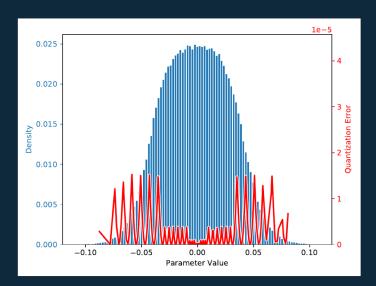
Posit Number System

Bitwise interpretation of a posit number

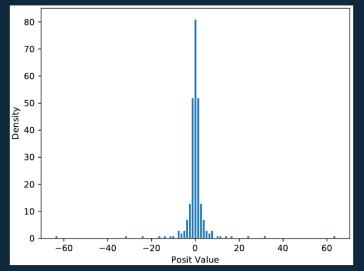
$$(-1)^s \times \left(2^{2^{es}}\right)^k \times 2^e \times 1.f$$

- Proposed as improvement over IEEE-754 floating point [5]
 - Better dynamic range
 - Higher accuracy
 - Clean: no redundant representations
 - No subnormals
 - Guaranteed program reproducibility
- Tapered-precision
- es parameter controls the dynamic range

Intuition for Posits



ConvNet weight distribution and quantization error for 8-bit posit, es=0.



8-bit posit, es=0, value distribution.

Methodology

- The Exact MAC Unit
- The DNN Accelerator

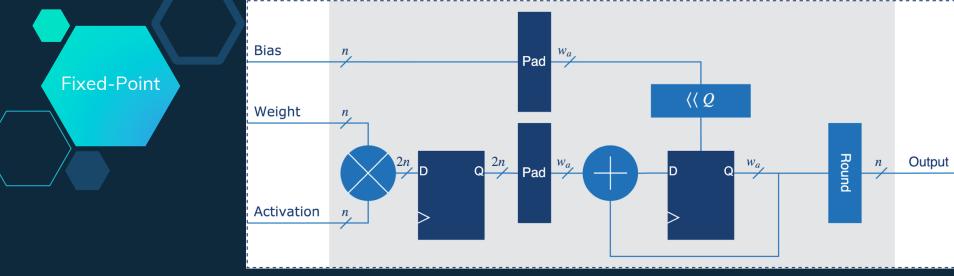
$$w_a = \lceil \log_2(k) \rceil + 2 \times \left| \log_2\left(\frac{max}{min}\right) \right| + 2$$

Fixed-point accumulator width. max and min are the maximum and minimum absolute values of a number format, respectively.

The Exact MAC (EMAC) Unit

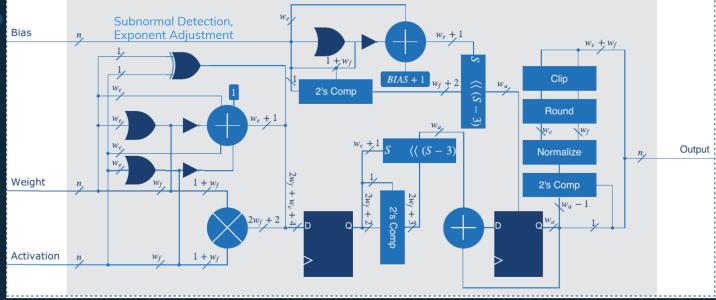
- Extend the MAC to the EMAC
- Wide accumulator architecture remains resourceefficient at low-precision
 - Accumulate in fixed-point
- Rounding & truncation delayed until sum of k products is computed
- Employed for all numerical formats considered

- Exact operations become vastly more impactful at low-precision
- ♦ Kulisch [7]:
 - Compute exact sums of products
 - A wide register accumulates fixed-point values shifted by an exponential parameter, if applicable
 - No rounding or truncation until result needed



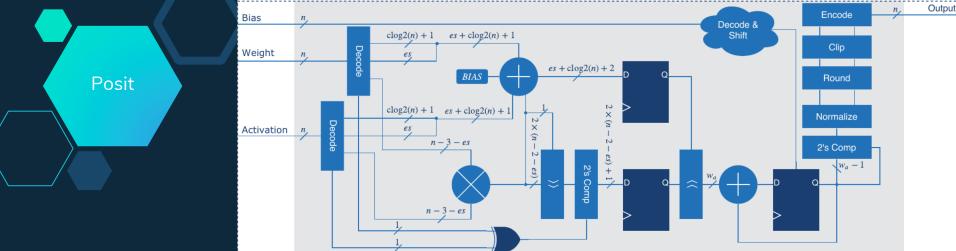
The fixed-point parametrized EMAC.

- ♦ Parametrized as *n*-bit number with Q fractional bits
- All EMACs receive a weight, bias, and activation/input data feature
- Rounding occurs after accumulation of the k products
 - Round-to-nearest, ties to even
- The wide accumulator is reset to the "Bias" at the beginning of each dot product
- No underflow/overflow, values clipped to max



The floating point parametrized EMAC.

- Parametrized as n-bit number with w_e exponential bits and w_f fractional bits
- ♦ NaN, +/- Inf not considered in implementation
- Subnormal detection required before multiplication and during exponent/mantissa packing
- The biased exponent is used to shift the product into its fixed-point representation for accumulation
- Single leading-zeros-detector (LZD) used to encode exponent and extract mantissa



The posit parametrized EMAC.

- Parametrized as n-bit number with es exponent bits
- ♦ NaR (Not-a-Real) not considered in implementation
- The biased exponent is used to shift the product into its fixed-point representation for accumulation
- Single leading-zeros-detector (LZD) used to encode exponent and extract fraction bits

Algorithm 1 Posit data extraction of *n*-bit input with *es* exponent bits

```
1: procedure DECODE(in)
                                                                                                                                                                                                               Data extraction of in
                                  nzero \leftarrow |in|
                                                                                                                                                                                                                        ▷ '1' if in is nonzero
                                   sign \leftarrow in[n-1]
                                                                                                                                                                                                                                                            twos \leftarrow (\{n-1\{\text{sign}\}\} \oplus \text{in}[n-2:0]) + \text{sign} \triangleright 2\text{'s Comp.}
   5:
                                  rc \leftarrow twos[n-2]
                                                                                                                                                                                                                                                  ▶ Regime check
                                  inv \leftarrow \{n-1\{rc\}\} \oplus twos
                                                                                                                                                                                                                                                                        ⊳ Invert 2's
                                   zc \leftarrow LZD(inv)
                                                                                                                                                                                                                     \mathsf{tmp} \leftarrow \mathsf{twos}[n-4:0] \ll (\mathsf{zc}-1)

    Shift out regime
    Shift out regime

                                   frac \leftarrow \{nzero, tmp[n-es-4:0]\}
                                                                                                                                                                                                                                           10:
                                  exp \leftarrow tmp[n-4:n-es-3]
                                                                                                                                                                                                                                    reg \leftarrow rc ? zc-1 : -zc
                                                                                                                                                                                                                                                    11:
                                   return sign, reg, exp, frac
12:
13: end procedure
```


Sign	Regime	Exponent, if any	Mantissa, if any
\sim		<u> </u>	
s	$r r \dots r i$	$e_1 \ e_2 \ e_3 \ \dots \ e_{e_3}$	$f_1 f_2 f_3 \dots$
		n Bits	
		n bits	

$$k = \begin{cases} n_reg - 1 & \text{, if } r = 1 \\ -n_reg & \text{, if } r = 0 \end{cases}$$

Posit Decoding

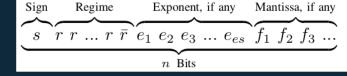
- Regime and exponent can be extracted naturally
- Shifting posit by n_reg regime bits gives e and f
 - Single LZD is used to extract n_reg
- ♦ As e is es bits, the scale factor is given simply by concatenating k and e

$$(-1)^{s} \times (2^{2^{es}})^{k} \times 2^{e} \times 1.f$$

$$(2^{2^{es}})^{k} \times 2^{e}$$

$$= 2^{(2^{es} \times k)} \times 2^{e}$$

$$= 2^{(2^{es} \times k + e)}$$
Scale factor



Posit Encoding

- Similarly, k and e can be taken easily from the scale factor
- Absolute value of k shifts e and f into place
 - Positive k: arithmetic shift right by k
 - Negative k: shift right by abs(k)-1
- Example:

$$k = -2$$
 (es = 1)
 $01effff|fff \rightarrow 001efff|fff$
 $k = 2$ (es = 1)
 $10effff|fff \rightarrow 1110eff|fff$

Example (es = 1):

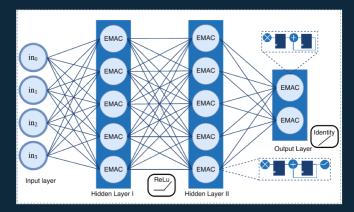
$$scalefactor = 11_{10} = 01011_2$$

 $\rightarrow k = 5_{10} = 0101_2$
 $\rightarrow e = 1_{10} = 1_2$
Verify:
 $2^{es} \times 5 + 1 = 11$

 $2^{es} \times k + e$

Scale factor

Deep Positron Accelerator



[1]

- Simple FPGA-accelerated fully-connected feedforward neural network
 - Generic network size (layers & hidden units)
 - Parameterized EMAC number format (fixedpoint, floating point, posit)
- Local memory per EMAC for DNN parameters
- ReLU activations, linear readout layer
- Inference only
- Xilinx Virtex-7 FPGA (xc7vx485t-2ffg1761c)

Results

- Supervised Tasks
- EMAC Comparisons
- Performance-Efficiency Trade-offs

The Tasks

- Wisconsin (WI) Breast Cancer [8]:
 - Malignant/Benign classification from 10 cellular features
- ♦ Iris [9]:
 - Iris flower ternary classification from 4 sepal/petal measurements
- Mushroom [10]:
 - Mushroom edibility (binary) classification from
 22 categorical attributes
- ♦ MNIST [11]:
 - Handwritten digit (0-9) classification (784pixel images)
- ♦ Fashion MNIST [12]:
 - Drop-in replacement for MNIST for clothing classification (tougher than MNIST)

Iris Versicolor

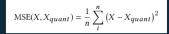
Iris Setosa

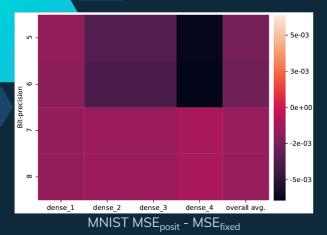
Iris Virginica

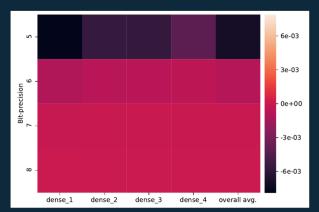
[13]

- High-precision training, low-precision inference
- DNNs trained with floating point at 32-bit precision
- Direct Quantization to [5,8]-bit {fixed,float,posit} for inference
 - Round-to-nearest with ties to even
- Format parameters are swept during inference
 - Posit: es
 - Floating point: w_e
 - Fixed-point: Q

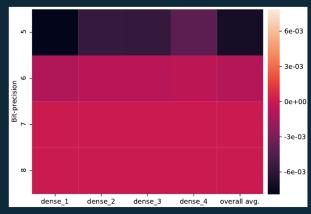
Quantization Error



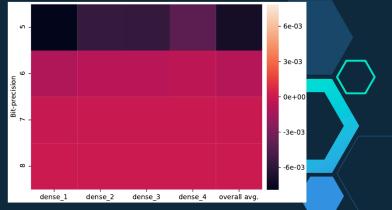




MNIST MSE_{posit} - MSE_{float}



Fashion MNIST MSE_{posit} - MSE_{fixed}



Fashion MNIST MSE_{posit} - MSE_{float}

Dataset	Inference Size	Posit	Floating Point	Fixed- Point	32-bit Float
	Size	Acc. (es)	Acc. (w_e)	Acc. (Q)	Acc.
WI Breast Cancer	190	85.9 % (2)	77.4% (4)	57.8% (5)	90.1%
Iris	50	98.0 % (1)	96.0% (3)	92.0% (4)	98.0%
Mushroom	2,708	96.4 % (1)	96.4 % (4)	95.9% (5)	96.8%
MNIST	10,000	98.5 % (1)	98.4% (4)	98.3% (5)	98.5%
Fashion MNIST	10,000	89.6% (1)	89.6% (4)	89.2% (4)	89.5%

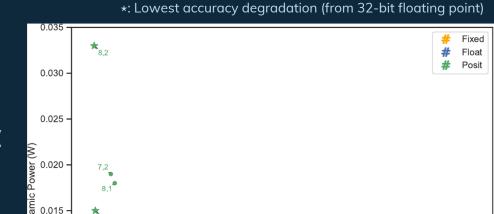
- ♦ Posit outperforms on all 5 tasks with direct quantization
 - Same accuracy as 32-bit floats in some cases

0.010

0.005

0.000

- Evaluated for [5,8] bit widths
- Floating point can be realized with a lower dynamic power requirement than posits
 - Also lower than fixed-point at <7 bits (in several cases)
- Posit at es=0 has competitive power consumption with floats
 - Consumes exponentially more power as es (dynamic range) grows



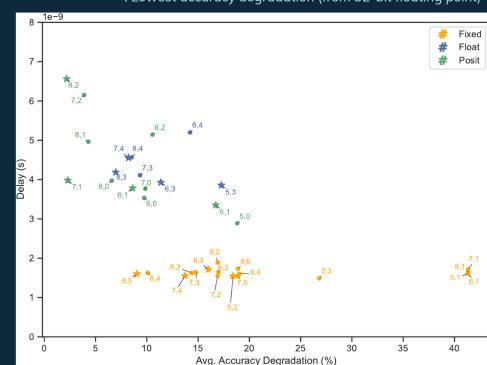
Avg. Accuracy Degradation (%)

35

Trade-off: EMAC Latency

*: Lowest accuracy degradation (from 32-bit floating point)

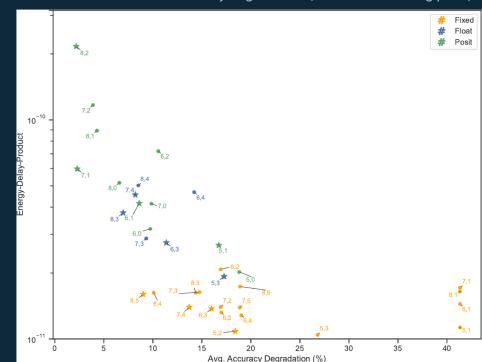
- Fixed-point (obviously) exhibits lowest latency, but worst performance
- Posits outperform floating point in both bitwidth and latency at all bit-widths ([5,8])
- Posit latency increases rapidly as es increases
 - However, es=0/1 still outperforms in both latency and degradation compared to floats



Trade-off: EMAC Energy-Delay-Product

- Fixed-point exhibits lowest EDP, but worst performance
- Posits have competitive EDP with floats at similar accuracy degradations
 - Floats generally have lower EDP
- Deep Positron with posit (es = 1) has better energy-delay-product and accuracy for [5, 7] bits
 - For 8-bit, es = 1 is a better fit for energyefficient applications and es = 2 for accuracy-dependent applications

*: Lowest accuracy degradation (from 32-bit floating point)

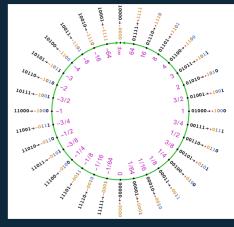


Comparison of posit arithmetic hardware implementations

Design	[17]	[3]	[25]	[4]	[23]	[18]	This Work
Device	Virtex-6 FPGA/ASIC	Zynq-7000 SoC/ASIC	Stratix V GX 5SGXA7 FPGA	Virtex7 VX690 & Ultrascale Plus VU3P FPGAs	Artix-7 FPGA	ASIC	Virtex-7 (xc7vx485t-2ffg1761c) FPGA
Task	-	FIR Filter	-	-	-	Image Classification	Image Classification
Dataset	-	-	-	-	-	ImageNet	WI Breast Cancer, Iris, Mush- room, MNIST, Fashion MNIST
Bit-precision	All	All	All	32	All	All, emphasized on 8	All, emphasized on [5, 8]
Operations	Mul,Add/Sub	Mul,Add/Sub	Mul,Add/Sub	Quire	Quire	Quire	Quire
Programming Language	Verilog	Verilog	C++ /OpenCL	Verilog	C#	OpenCl	VHDL
Technology Node	40 nm / 90 nm	28 nm / 90 nm	28 nm	28 nm / 20 nm	28 nm	28 nm	28 nm

Conclusion

- Posits are a natural fit for low-precision DNN inference
- Posits can be fine-tuned for either accuracy-critical or latency-critical applications
- A system level optimization is required for large scale analysis and energy savings(with EMACs)



[6]

References

- [1] Carmichael, Z. et al. 2019. Deep Positron: A Deep Neural Network Using Posit Number System. In Design, Automation & Test in Europe (DATE) Conference & Exhibition. IEEE.
- [2] Shazeer, N. et al. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538(2017).
- [3] Mishra, A. and Marr, D. 2018. WRPN & Apprentice: Methods for Training and Inference using Low-Precision Numerics. arXiv preprint arXiv:1803.00227(2018).
- [4] Carmichael, Z. et al. 2019. Performance-Efficiency Trade-off of Low-Precision Numerical Formats in Deep Neural Networks. In Conference for Next Generation Arithmetic 2019 (CoNGA'19). ACM.
- [5] Gustafson, J.L. and Yonemoto, I.T. 2017. Beating Floating Point at its Own Game: Posit Arithmetic. Supercomputing Frontiers and Innovations 4. 2 (2017), 71–86.
- [6] J. Gustafson, "Next Generation Arithmetic for HPC and Al: An Update", Rochester Institute of Technology Graduate Seminar, 2018. Used with permission.
- [7] Kulisch, U. 2013.Computer arithmetic and validity: theory, implementation, and applications. Vol. 33. Walter de Gruyter.
- [8] Street, W.N. et al. 1993. Nuclear feature extraction for breast tumor diagnosis. In Biomedical Image Processing and Biomedical Visualization, Vol. 1905. International Society for Optics and Photonics, 861–871.
- [9] Fisher, R.A. 1936. The use of multiple measurements in taxonomic problems. Annals of eugenics 7, 2 (1936), 179–188.
- [10] Schlimmer, J.C. 1987. Concept acquisition through representational adjustment. (1987)
- [11] LeCun, Y. 1998. The MNIST database of handwritten digits. http://yann. lecun.com/exdb/mnist/(1998)
- [12] Xiao, H. et al. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.arXiv preprint arXiv:1708.07747 (2017).

References

[13] Medium. (2019). Iris Flower Classification – Srishti Sawla – Medium. [online] Available at: https://medium.com/@srishtisawla/iris-flower-classification-fb6189de3fff.

[14] Nielsen, M. (2019). Neural Networks and Deep Learning. [online] Neuralnetworksanddeeplearning.com. Available at: http://neuralnetworksanddeeplearning.com/chap6.html.

[18] Johnson, J. 2018. Rethinking floating point for deep learning. arXiv preprint, arXiv:1811.01721 (2018).

