
Performance-Efficiency Trade-off of Low-Precision
Numerical Formats in Deep Neural Networks

Authors: Zachariah Carmichael, Hamed F. Langroudi, Char Khazanov,
Jeffrey Lillie, John L. Gustafson, Dhireesha Kudithipudi

Neuromorphic AI Lab, Rochester Institute of Technology, NY, USA

1

Background

2

● Deep Neural Networks
● AI on Edge-Devices
● Posits

Deep Neural
Networks (DNNs)
◇ Highly-parallel connectionist networks

◇ DNNs learn a nonlinear input-to-output function by
minimizing an objective via gradient descent and
backpropagation with labeled data (in general)

◇ Successfully applied to various domains: natural
language processing, genomics, computer vision

3

[14]

◇ Multiply-and-Accumulate (MAC) units ubiquitous

across DNNs

◇ MAC operations consume compute resources

◇ Data & DNN parameters consume memory

4

DNNs are Hungry
Mixture-of-Experts network with >137 billion

parameters (~548 GB memory with 32-bit floats) [2].

How can DNNs be deployed tractably on edge devices without sacrificing
performance?

5

Quantization
◇ Linear & Nonlinear Quantization

� On-device compute overhead
� May require retraining
� May require an increase in DNN parameters or

hyperparameters [3]

◇ Direct Quantization
� No compute overhead
� Relies on natural distribution of numerical

format for maintaining inference performance

6

7

There is a need for a fair
comparison between low-
precision numerical
formats.
How do the natural distributions of numerical formats compare
during low-precision DNN inference?
◇ Fixed-point
◇ Floating point
◇ Posit

Posit Number
System
◇ Proposed as improvement over IEEE-754 floating point [5]

� Better dynamic range
� Higher accuracy
� Clean: no redundant representations
� No subnormals
� Guaranteed program reproducibility

◇ Tapered-precision
◇ es parameter controls the dynamic range

8

Bitwise interpretation of a posit number

Intuition for Posits

9

ConvNet weight distribution and quantization error
for 8-bit posit, es=0.

8-bit posit, es=0, value distribution.

Methodology

10

● The Exact MAC Unit
● The DNN Accelerator

The Exact MAC
(EMAC) Unit
◇ Extend the MAC to the EMAC
◇ Wide accumulator architecture remains resource-

efficient at low-precision
� Accumulate in fixed-point

◇ Rounding & truncation delayed until sum of k
products is computed

◇ Employed for all numerical formats considered

11

Fixed-point accumulator width. max and min are the maximum and minimum
absolute values of a number format, respectively.

The Kulisch Exact
Dot Product
◇ Exact operations become vastly more impactful at

low-precision
◇ Kulisch [7]:

� Compute exact sums of products
� A wide register accumulates fixed-point

values shifted by an exponential parameter, if
applicable

� No rounding or truncation until result needed

12

13

The fixed-point parametrized EMAC.

◇ Parametrized as n-bit number with Q fractional bits
◇ All EMACs receive a weight, bias, and

activation/input data feature
◇ Rounding occurs after accumulation of the k

products
� Round-to-nearest, ties to even

◇ The wide accumulator is reset to the “Bias” at the
beginning of each dot product

◇ No underflow/overflow, values clipped to max

Fixed-Point

14

The floating point parametrized EMAC.

◇ Parametrized as n-bit number with we exponential
bits and wf fractional bits

◇ NaN, +/- Inf not considered in implementation
◇ Subnormal detection required before multiplication

and during exponent/mantissa packing
◇ The biased exponent is used to shift the product into

its fixed-point representation for accumulation
◇ Single leading-zeros-detector (LZD) used to encode

exponent and extract mantissa

Floating
Point

Subnormal Detection,
Exponent Adjustment

15

The posit parametrized EMAC.

Posit

◇ Parametrized as n-bit number with es exponent bits
◇ NaR (Not-a-Real) not considered in implementation
◇ The biased exponent is used to shift the product into

its fixed-point representation for accumulation
◇ Single leading-zeros-detector (LZD) used to encode

exponent and extract fraction bits

16

Posit Decoding

17

◇ Regime and exponent can be extracted naturally
◇ Shifting posit by n_reg regime bits gives e and f

� Single LZD is used to extract n_reg
◇ As e is es bits, the scale factor is given simply by

concatenating k and e

Scale factor

Posit Encoding

18

◇ Similarly, k and e can be taken easily from the
scale factor

◇ Absolute value of k shifts e and f into place
� Positive k: arithmetic shift right by k
� Negative k: shift right by abs(k)-1

◇ Example:

k = -2 (es = 1)
01effff|fff → 001efff|fff

k = 2 (es = 1)
10effff|fff → 1110eff|fff

Example (es = 1):
scalefactor = 1110 = 010112

→ k = 510 = 01012
→ e = 110 = 12

Verify:
2es x 5 + 1 = 11

Scale factor

Deep Positron
Accelerator
◇ Simple FPGA-accelerated fully-connected

feedforward neural network
� Generic network size (layers & hidden units)
� Parameterized EMAC number format (fixed-

point, floating point, posit)
◇ Local memory per EMAC for DNN parameters
◇ ReLU activations, linear readout layer
◇ Inference only
◇ Xilinx Virtex-7 FPGA (xc7vx485t-2ffg1761c)

19

[1]

Results

20

● Supervised Tasks
● EMAC Comparisons
● Performance-Efficiency

Trade-offs

The Tasks
◇ Wisconsin (WI) Breast Cancer [8]:

� Malignant/Benign classification from 10
cellular features

◇ Iris [9]:
� Iris flower ternary classification from 4

sepal/petal measurements
◇ Mushroom [10]:

� Mushroom edibility (binary) classification from
22 categorical attributes

◇ MNIST [11]:
� Handwritten digit (0-9) classification (784-

pixel images)
◇ Fashion MNIST [12]:

� Drop-in replacement for MNIST for clothing
classification (tougher than MNIST)

21

[13]

[12]

DNN Training &
Inference
◇ High-precision training, low-precision inference
◇ DNNs trained with floating point at 32-bit precision
◇ Direct Quantization to [5,8]-bit {fixed,float,posit} for

inference
� Round-to-nearest with ties to even

◇ Format parameters are swept during inference
� Posit: es
� Floating point: we
� Fixed-point: Q

22

Quantization Error

23

MNIST MSEposit - MSEfixed

MNIST MSEposit - MSEfloat

Fashion MNIST MSEposit - MSEfixed

Fashion MNIST MSEposit - MSEfloat

Task Results (8-bit)

24

◇ Posit outperforms on all 5 tasks with direct quantization
� Same accuracy as 32-bit floats in some cases

Trade-off: EMAC Power

25

◇ Evaluated for [5,8] bit widths

◇ Floating point can be realized with a lower
dynamic power requirement than posits
� Also lower than fixed-point at <7 bits (

in several cases)
◇ Posit at es=0 has competitive power

consumption with floats
� Consumes exponentially more power

as es (dynamic range) grows

⋆: Lowest accuracy degradation (from 32-bit floating point)

Trade-off: EMAC Latency

26

◇ Fixed-point (obviously) exhibits lowest
latency, but worst performance

◇ Posits outperform floating point in both bit-
width and latency at all bit-widths ([5,8])

◇ Posit latency increases rapidly as es
increases
� However, es=0/1 still outperforms in

both latency and degradation
compared to floats

⋆: Lowest accuracy degradation (from 32-bit floating point)

Trade-off: EMAC Energy-Delay-Product

27

⋆: Lowest accuracy degradation (from 32-bit floating point)

◇ Fixed-point exhibits lowest EDP, but worst
performance

◇ Posits have competitive EDP with floats at
similar accuracy degradations
� Floats generally have lower EDP

◇ Deep Positron with posit (es = 1) has better
energy-delay-product and accuracy for [5, 7]
bits
� For 8-bit, es = 1 is a better fit for energy-

efficient applications and es = 2 for
accuracy-dependent applications

Comparison of posit
arithmetic hardware
implementations

28

Conclusion
◇ Posits are a natural fit for low-precision DNN

inference
◇ Posits can be fine-tuned for either accuracy-critical

or latency-critical applications

◇ A system level optimization is required for large
scale analysis and energy savings(with EMACs)

29

[6]

References

30

[1] Carmichael, Z. et al. 2019. Deep Positron: A Deep Neural Network Using Posit Number System. In Design, Automation
& Test in Europe (DATE) Conference & Exhibition. IEEE.

[2] Shazeer, N. et al. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538(2017).

[3] Mishra, A. and Marr, D. 2018. WRPN & Apprentice: Methods for Training and Inference using Low-Precision Numerics.
arXiv preprint arXiv:1803.00227(2018).

[4] Carmichael, Z. et al. 2019. Performance-Efficiency Trade-off of Low-Precision Numerical Formats in Deep Neural
Networks. In Conference for Next Generation Arithmetic 2019 (CoNGA’19). ACM.

[5] Gustafson, J.L. and Yonemoto, I.T. 2017. Beating Floating Point at its Own Game:Posit Arithmetic.Supercomputing
Frontiers and Innovations 4, 2 (2017), 71–86.

[6] J. Gustafson, “Next Generation Arithmetic for HPC and AI: An Update”, Rochester Institute of Technology Graduate
Seminar, 2018. Used with permission.

[7] Kulisch, U. 2013.Computer arithmetic and validity: theory, implementation, and applications. Vol. 33. Walter de Gruyter.

[8] Street, W.N. et al. 1993. Nuclear feature extraction for breast tumor diagnosis. In Biomedical Image Processing and
Biomedical Visualization, Vol. 1905. International Society for Optics and Photonics, 861–871.

[9] Fisher, R.A. 1936. The use of multiple measurements in taxonomic problems.Annals of eugenics 7, 2 (1936), 179–188.

[10] Schlimmer, J.C. 1987. Concept acquisition through representational adjustment.(1987)

[11] LeCun, Y. 1998. The MNIST database of handwritten digits. http://yann. lecun.com/exdb/mnist/(1998)

[12] Xiao, H. et al. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.arXiv
preprint arXiv:1708.07747(2017).

References

31

[13] Medium. (2019). Iris Flower Classification – Srishti Sawla – Medium. [online] Available at:
https://medium.com/@srishtisawla/iris-flower-classification-fb6189de3fff.

[14] Nielsen, M. (2019). Neural Networks and Deep Learning. [online] Neuralnetworksanddeeplearning.com. Available at:
http://neuralnetworksanddeeplearning.com/chap6.html.

[18] Johnson, J. 2018. Rethinking floating point for deep learning. arXiv preprint, arXiv:1811.01721 (2018).

https://medium.com/@srishtisawla/iris-flower-classification-fb6189de3fff
http://neuralnetworksanddeeplearning.com/chap6.html

