- -

Performance-Efficiency Trade-off of Low-Precision
Numerical Formats in Deep Neural Networks

Authors: Zachariah Carmichael, Hamed F. Langroudi, Char Khazanov,
Jeffrey Lillie, John L. Gustafson, Dhireesha Kudithipudi
Neuromorphic Al Lab, Rochester Institute of Technology, NY, USA

R I T Rochester Institute of Technology <:>

Background

e Deep Neural Networks
e Al on Edge-Devices
e Posits

o

: 4

W

input layer

Deep Neural

Networks (DNNs

<& Highly-parallel connectionist networks

<& DNNs learn a nonlinear input-to-output function by
minimizing an objective via gradient descent and
backpropagation with labeled data (in general)

<& Successfully applied to various domains: natural
language processing, genomics, computer vision

hidden layer 1 hidden layer

92

hidden layer 3

Mixture-of-Experts network with >137 billion
parameters (~548 GB memory with 32-bit floats) [2].

DNNs are Hungry

<& Multiply-and-Accumulate (MAC) units ubiquitous
across DNNs

& MAC operations consume compute resources

¢ Data & DNN parameters consume memory <:>

Development Deployment

U

.

Training Inference
Evaluation
Tuning

How can DNNs be deployed tractably on edge devices without sacrificing
performance?

@)

Quantization

<& Linear & Nonlinear Quantization

On-device compute overhead

May require retraining

May require an increase in DNN parameters or
hyperparameters [3]

<& Direct Quantization

No compute overhead
Relies on natural distribution of numerical
format for maintaining inference performance

x: 32-bit x = p(x) @(x): <8-bit
———

—— Quantization ——
clip(x) and Clipping clip(x)

There is a need for a fair
comparison between low-
precision numerical
formats.

How do the natural distributions of numerical formats compare
during low-precision DNN inference?

<& Fixed-point
< Floating point
< Posit

Sign Regime Exponent, if any =~ Mantissa, if any

/\/—/%r_’*/—’_\

S rT..TT e eyes ... e f1fof3...

n Bits

Bitwise interpretation of a posit number

(—1)5 x (22°) x 2¢ x 1.f

Posit Number
System

<& Proposed as improvement over IEEE-754 floating point [5]

= Better dynamic range

= Higher accuracy

= (Clean: no redundant representations

= No subnormals

= Guaranteed program reproducibility <:>
<& Tapered-precision
<& es parameter controls the dynamic range

Quantization Error

0.00 .
Parameter Value -20 0
Posit Value

ConvNet weight distribution and quantization error 8-bit posit, es=0, value distribution.
for 8-bit posit, es=0.

Methodology

e The Exact MAC Unit
e The DNN Accelerator

o

11

&
&

w, = [logy(k)] + 2 [

Fixed-point accumulator width. max and min are the maximum and minimum
absolute values of a number format, respectively.

Ihe Exact MAC
(EMAC) Unit

Extend the MAC to the EMAC
Wide accumulator architecture remains resource-
efficient at low-precision
= Accumulate in fixed-point
Rounding & truncation delayed until sum of k

products is computed <:>
Employed for all numerical formats considered

X 9 ..
> > .

The Kulisch Exact
Dot Product

<& Exact operations become vastly more impactful at
low-precision
<& Kulisch [7]:
= Compute exact sums of products
= A wide register accumulates fixed-point
values shifted by an exponential parameter, if
applicable
= No rounding or truncation until result needed

12

Activation n

The fixed-point parametrized EMAC.

Parametrized as n-bit number with Q fractional bits
All EMACs receive a weight, bias, and
activation/input data feature
Rounding occurs after accumulation of the k
products

= Round-to-nearest, ties to even
The wide accumulator is reset to the “Bias” at the
beginning of each dot product
No underflow/overflow, values clipped to max

Subnormal Detection,
Exponent Adjustment

AT
\|m BIAS + 1 ()

Wg

{((§—3) Normalize Output !

C

Weight

SnheundlmE | 2's Comp

w, — 1

B+ M+ Img

Activation

The floating point parametrized EMAC.

Parametrized as n-bit number with w, exponential

bits and w; fractional bits

NaN, +/- Inf not considered in implementation <:>
Subnormal detection required before multiplication

and during exponent/mantissa packing

The biased exponent is used to shift the product into

its fixed-point representation for accumulation

Single leading-zeros-detector (LZD) used to encode

exponent and extract mantissa

<
<
<

Decode &
clog2(n) + 1 es + clog2(n) + 1 Shift

es

es +clog2(n) + 2

s o

clog2(n) + 1 es + clog2(n) + 1

™)
X
|
(8]
|
33

The posit parametrized EMAC.

Parametrized as n-bit number with es exponent bits
NaR (Not-a-Real) not considered in implementation
The biased exponent is used to shift the product into
its fixed-point representation for accumulation
Single leading-zeros-detector (LZD) used to encode
exponent and extract fraction bits

Algorithm 1 Posit data extraction of n-bit input with es
exponent bits

1: procedure DECODE(in) > Data extraction of in

2: nzero < |in > ’1" if in is nonzero

3 sign < in[n—1] > Extract sign
twos < ({n—1{sign}} @ in[n-2:0]) 4 sign > 2’s Comp.
rc + twos[n—2] > Regime check
inv < {n—-1{rc}} ® twos > Invert 2°s
zc < LZD(inv) > Count leading zeros
tmp < twos[n—-4:0] < (zc—1) > Shift out regime
frac < {nzero,tmp[n-es—4:0]} > Extract fraction
exp < tmp[n—4:n-es-3] > Extract exponent
reg<—rc ? zc—1:-zc > Select regime
return sign, reg, exp, frac

: end procedure

Sign Regime Exponent, if any =~ Mantissa, if any
AN e e e
S TrT..TT e ey ez ... e f1 fof3 ..

n Bits

noreg—1,ifr=1
—n._reqg , iftr=«(

Pogit Decoding

<& Regime and exponent can be extracted naturally
<& Shifting posit by n_reg regime bits gives e and f
= Single LZD is used to extract n_reg
<& As eis es bits, the scale factor is given simply by
concatenating k and e

Scale factor

Sign Regime Exponent, if any =~ Mantissa, if any

N —_———

" ... T T e €y €3 ... s f1 fo f3 ...

n Bits

Pogit Encoding

..) Example (es = 1):
<& Similarly, k and e can be taken easily from the

scalefactor =
scale factor Lk =5y =
& Absolute value of k shifts e and f into place L e =1, =
= Positive k: arithmetic shift right by k Verify:

= Negative k: shift right by abs(k)-1 285 x 5 + 1

< Example:

k=-2 (es =1)
Oleffff|fff - 00lefff|fff

Scale factor

=2 (es = 1)
10effff|fff - 1110eff| fff

_

Deep Pogitron
Accelerator

<& Simple FPGA-accelerated fully-connected
feedforward neural network

= Generic network size (layers & hidden units)

= Parameterized EMAC number format (fixed-

point, floating point, posit)

Local memory per EMAC for DNN parameters <:>
RelLU activations, linear readout layer
Inference only
Xilinx Virtex-7 FPGA (xc7vx485t-2ffg1761c)

O OO0

Regults

e Supervised Tasks
e EMAC Comparisons

e Performance-Efficiency
Trade-offs

20

dr Ve |

Iris Virginica

1The Tasks

foasgefay -1
<MEMONE] Jax
, _ wﬁﬂAﬁimgus
<& Wisconsin (WI) Breast Cancer [8]: J’l"ldfl\l* | %
Malignant/Benign classification from 10 10m—00 «t
cellular features aialAT 8V
S Iris [91: A——uwamlAM
ris [9]: MM LITTY
= Iris flower ternary classification from 4] 1 «zfﬁf&%i
[12]

sepal/petal measurements
< Mushroom [10]:
= Mushroom edibility (binary) classification from
22 categorical attributes
<& MNIST [11]:
= Handwritten digit (0-9) classification (784-
pixel images)
<& Fashion MNIST [12]:
= Drop-in replacement for MNIST for clothing
classification (tougher than MNIST)

@

DNN Training &

nirerence

OO0

High-precision training, low-precision inference
DNNs trained with floating point at 32-bit precision
Direct Quantization to [5,8]-bit {fixed,float,posit} for
inference

= Round-to-nearest with ties to even
Format parameters are swept during inference

= Posit: es

= Floating point: w,

= Fixed-point: Q

n

- v 1 F 2
MSE()\--)\quuni) = n Z (X - quuunt)

c
o
o
]
1]
L
S
=
o

Bit-precision

dense_1 dense_2 dense_3 dense_4 overall avg.

MNIST MSEcsit - MSEfixed Fashion MNIST MSEsit - MSEfixed

dense_1 dense_2 dense_3 dense_4 overall avg.

Bit-precision
Bit-precision

dense_1 dense_2 dense_3 dense_4 overall avg.

dense_1 dense_2 dense_3 dense_4 overall avg.

MNIST MSEposit - MSEfioat Fashion MNIST MSE gt - MSEqoqt

Posit Floating
Inference Point

Dataset Size

Acc. (we)
WI Breast Cancer 190 . 77.4% (4)

Iris 50) 96.0% (3)
Mushroom 2,708) 96.4% (4)
MNIST 10,000 . 98.4% (4)
Fashion MNIST 10,000 . 89.6% (4)

Task Results (8-bit)

Fixed-
Point

Acc. (Q)
57.8% (5)

(

92.0% (4)
95.9% (5)
98.3% (5)
89.2% (4)

<& Posit outperforms on all 5 tasks with direct quantization
= Same accuracy as 32-bit floats in some cases

&

Trade-off: EMAC Power

*: Lowest accuracy degradation (from 32-bit floating point)

Fixed

Evaluated for [5,8] bit widths v # Float

Posit
Floating point can be realized with a lower
dynamic power requirement than posits

= Also lower than fixed-point at <7 bits (
in several cases)
Posit at es=0 has competitive power
consumption with floats
= Consumes exponentially more power
as es (dynamic range) grows

=
a]
3
8
0.
=
£
@
c
s
(@]

15 20 25 30
Avg. Accuracy Degradation (%)

Trade-oft:

Fixed-point (obviously) exhibits lowest

latency, but worst performance

Posits outperform floating point in both bit-

width and latency at all bit-widths ([5,8])

Posit latency increases rapidly as es

increases

= However, es=0/1 still outperforms in

both latency and degradation
compared to floats

EMAC Latency

*: Lowest accuracy degradation (from 32-bit floating point)

Fixed
Float
Posit

15 20 25
Avg. Accuracy Degradation (%)

Fixed-point exhibits lowest EDP, but worst
performance
Posits have competitive EDP with floats at
similar accuracy degradations

= Floats generally have lower EDP

Deep Positron with posit (es = 1) has better
energy-delay-product and accuracy for [5, 7]
bits
= For 8-bit, es = 1 is a better fit for energy-
efficient applications and es = 2 for
accuracy-dependent applications

-
3]
S
S
Q
*
=
| ©
5]
2
>
>
=
@
c
Ll

Trade-off: EMAC Energy-Delay-Product

*: Lowest accuracy degradation (from 32-bit floating point)

20 25
Avg. Accuracy Degradation (%)

30

Fixed
Float
Posit

Comparison of posit
arithmetic hardware
implementations

Design [17] (3] [25] [4] [23] [18] This Work
. . o I Stratix VGX Virtex7 VX690 & Ultrascale
Device Virtex-6 FPGA/ASIC ~ Zyng-7000 SoC/ASIC 5SGXA7 FPGA Plus VU3P FPGAs

. . e Virtex-7 (xc7vx485t-2ffg1761c)
Artix-7 FPGA ASIC FPGA
Task FIR Filter - - Image Classification Image Classification
7 WI Breast Cancer, Iris, Mush-
- - ImageNet room, MNIST, Fashion MNIST

Dataset -
All All All 32 All All, emphasized or All, emphasized on [5, 8]

Mul A Mul,Add/Sub Mul,Add/Sub Quire Quire Quire Quire

Verilog C# OpenCl VHDL

28 nm

Bit-precision
Operations
Programming Language Verilog Verilog C++ /OpenCL

Technology Node 40 nm / 90 nm 28 nm/ 90 nm 28 nm 28 nm / 20 nm 28 nm 28 nm

S

Conclusion

<& Posits are a natural fit for low-precision DNN

inference
<& Posits can be fine-tuned for either accuracy-critical
or latency-critical applications

<& A system level optimization is required for large
scale analysis and energy savings(with EMACs)

(6]

30

References

[1] Carmichael, Z. et al. 2019. Deep Positron: A Deep Neural Network Using Posit Number System. In Design, Automation
& Test in Europe (DATE) Conference & Exhibition. IEEE.

[2] Shazeer, N. et al. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538(2017).

[3] Mishra, A. and Marr, D. 2018. WRPN & Apprentice: Methods for Training and Inference using Low-Precision Numerics.
arXiv preprint arXiv:1803.00227(2018).

[4] Carmichael, Z. et al. 2019. Performance-Efficiency Trade-off of Low-Precision Numerical Formats in Deep Neural
Networks. In Conference for Next Generation Arithmetic 2019 (CoNGA’19). ACM.

[5] Gustafson, J.L. and Yonemoto, |.T. 2017. Beating Floating Point at its Own Game:Posit Arithmetic.Supercomputing
Frontiers and Innovations 4, 2 (2017), 71-86.

[6] J. Gustafson, “Next Generation Arithmetic for HPC and Al: An Update”, Rochester Institute of Technology Graduate
Seminar, 2018. Used with permission.

[7] Kulisch, U. 2013.Computer arithmetic and validity: theory, implementation, and applications. Vol. 33. Walter de Gruyter.

[8] Street, W.N. et al. 1993. Nuclear feature extraction for breast tumor diagnosis. In Biomedical Image Processing and
Biomedical Visualization, Vol. 1905. International Society for Optics and Photonics, 861-871.

[9] Fisher, R.A. 1936. The use of multiple measurements in taxonomic problems.Annals of eugenics 7, 2 (1936), 179-188.
[10] Schlimmer, J.C. 1987. Concept acquisition through representational adjustment.(1987)
[11] LeCun, Y. 1998. The MNIST database of handwritten digits. http://yann. lecun.com/exdb/mnist/(1998)

[12] Xiao, H. et al. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.arXiv
preprint arXiv:1708.07747(2017).

()

31

References

[13] Medium. (2019). Iris Flower Classification — Srishti Sawla — Medium. [online] Available at:
[14] Nielsen, M. (2019). Neural Networks and Deep Learning. [online] Neuralnetworksanddeeplearning.com. Available at:

[18] Johnson, J. 2018. Rethinking floating point for deep learning. arXiv preprint, arXiv:1811.01721 (2018).

https://medium.com/@srishtisawla/iris-flower-classification-fb6189de3fff
http://neuralnetworksanddeeplearning.com/chap6.html

