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Background
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● Deep Neural Networks
● AI on Edge-Devices
● Posits



Deep Neural 
Networks (DNNs)
◇ Highly-parallel connectionist networks

◇ DNNs learn a nonlinear input-to-output function by 
minimizing an objective via gradient descent and 
backpropagation with labeled data (in general)

◇ Successfully applied to various domains: natural 
language processing, genomics, computer vision
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◇ Multiply-and-Accumulate (MAC) units ubiquitous 

across DNNs

◇ MAC operations consume compute resources

◇ Data & DNN parameters consume memory
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DNNs are Hungry
Mixture-of-Experts network with >137 billion 

parameters (~548 GB memory with 32-bit floats) [2].



How can DNNs be deployed tractably on edge devices without sacrificing
performance?
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Quantization
◇ Linear & Nonlinear Quantization

� On-device compute overhead
� May require retraining
� May require an increase in DNN parameters or 

hyperparameters [3]

◇ Direct Quantization
� No compute overhead
� Relies on natural distribution of numerical 

format for maintaining inference performance
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There is a need for a fair
comparison between low-
precision numerical 
formats.
How do the natural distributions of numerical formats compare 
during low-precision DNN inference?
◇ Fixed-point
◇ Floating point
◇ Posit



Posit Number 
System
◇ Proposed as improvement over IEEE-754 floating point [5]

� Better dynamic range
� Higher accuracy
� Clean: no redundant representations
� No subnormals
� Guaranteed program reproducibility

◇ Tapered-precision
◇ es parameter controls the dynamic range
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Bitwise interpretation of a posit number 



Intuition for Posits
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ConvNet weight distribution and quantization error 
for 8-bit posit, es=0.

8-bit posit, es=0, value distribution.



Methodology
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● The Exact MAC Unit
● The DNN Accelerator



The Exact MAC 
(EMAC) Unit
◇ Extend the MAC to the EMAC
◇ Wide accumulator architecture remains resource-

efficient at low-precision
� Accumulate in fixed-point

◇ Rounding & truncation delayed until sum of k
products is computed

◇ Employed for all numerical formats considered
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Fixed-point accumulator width. max and min are the maximum and minimum 
absolute values of a number format, respectively.



The Kulisch Exact 
Dot Product
◇ Exact operations become vastly more impactful at 

low-precision
◇ Kulisch [7]:

� Compute exact sums of products
� A wide register accumulates fixed-point 

values shifted by an exponential parameter, if 
applicable

� No rounding or truncation until result needed
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The fixed-point parametrized EMAC.

◇ Parametrized as n-bit number with Q fractional bits
◇ All EMACs receive a weight, bias, and 

activation/input data feature
◇ Rounding occurs after accumulation of the k

products
� Round-to-nearest, ties to even

◇ The wide accumulator is reset to the “Bias” at the 
beginning of each dot product

◇ No underflow/overflow, values clipped to max

Fixed-Point
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The floating point parametrized EMAC.

◇ Parametrized as n-bit number with we exponential 
bits and wf fractional bits

◇ NaN, +/- Inf not considered in implementation
◇ Subnormal detection required before multiplication 

and during exponent/mantissa packing
◇ The biased exponent is used to shift the product into 

its fixed-point representation for accumulation
◇ Single leading-zeros-detector (LZD) used to encode 

exponent and extract mantissa

Floating 
Point

Subnormal Detection, 
Exponent Adjustment
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The posit parametrized EMAC.

Posit

◇ Parametrized as n-bit number with es exponent bits
◇ NaR (Not-a-Real) not considered in implementation
◇ The biased exponent is used to shift the product into 

its fixed-point representation for accumulation
◇ Single leading-zeros-detector (LZD) used to encode 

exponent and extract fraction bits
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Posit Decoding
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◇ Regime and exponent can be extracted naturally
◇ Shifting posit by n_reg regime bits gives e and f

� Single LZD is used to extract n_reg
◇ As e is es bits, the scale factor is given simply by 

concatenating k and e

Scale factor



Posit Encoding
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◇ Similarly, k and e can be taken easily from the 
scale factor

◇ Absolute value of k shifts e and f into place
� Positive k: arithmetic shift right by k
� Negative k: shift right by abs(k)-1

◇ Example:

k = -2 (es = 1)
01effff|fff → 001efff|fff

k = 2 (es = 1)
10effff|fff → 1110eff|fff

Example (es = 1):
scalefactor = 1110 = 010112

→ k = 510 = 01012
→ e = 110 = 12

Verify:
2es x 5 + 1 = 11

Scale factor



Deep Positron 
Accelerator
◇ Simple FPGA-accelerated fully-connected 

feedforward neural network
� Generic network size (layers & hidden units)
� Parameterized EMAC number format (fixed-

point, floating point, posit)
◇ Local memory per EMAC for DNN parameters
◇ ReLU activations, linear readout layer
◇ Inference only
◇ Xilinx Virtex-7 FPGA (xc7vx485t-2ffg1761c)
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Results
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● Supervised Tasks
● EMAC Comparisons
● Performance-Efficiency 

Trade-offs



The Tasks
◇ Wisconsin (WI) Breast Cancer [8]:

� Malignant/Benign classification from 10 
cellular features

◇ Iris [9]:
� Iris flower ternary classification from 4 

sepal/petal measurements
◇ Mushroom [10]:

� Mushroom edibility (binary) classification from 
22 categorical attributes

◇ MNIST [11]: 
� Handwritten digit (0-9) classification (784-

pixel images)
◇ Fashion MNIST [12]:

� Drop-in replacement for MNIST for clothing 
classification (tougher than MNIST)

21

[13]

[12]



DNN Training & 
Inference
◇ High-precision training, low-precision inference
◇ DNNs trained with floating point at 32-bit precision
◇ Direct Quantization to [5,8]-bit {fixed,float,posit} for 

inference
� Round-to-nearest with ties to even

◇ Format parameters are swept during inference
� Posit: es
� Floating point: we
� Fixed-point: Q
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Quantization Error
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MNIST MSEposit - MSEfixed

MNIST MSEposit - MSEfloat

Fashion MNIST MSEposit - MSEfixed

Fashion MNIST MSEposit - MSEfloat



Task Results (8-bit)
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◇ Posit outperforms on all 5 tasks with direct quantization
� Same accuracy as 32-bit floats in some cases



Trade-off: EMAC Power
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◇ Evaluated for [5,8] bit widths

◇ Floating point can be realized with a lower 
dynamic power requirement than posits
� Also lower than fixed-point at <7 bits ( 

in several cases)
◇ Posit at es=0 has competitive power 

consumption with floats
� Consumes exponentially more power 

as es (dynamic range) grows

⋆: Lowest accuracy degradation (from 32-bit floating point)



Trade-off: EMAC Latency
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◇ Fixed-point (obviously) exhibits lowest 
latency, but worst performance

◇ Posits outperform floating point in both bit-
width and latency at all bit-widths ([5,8])

◇ Posit latency increases rapidly as es
increases
� However, es=0/1 still outperforms in 

both latency and degradation 
compared to floats

⋆: Lowest accuracy degradation (from 32-bit floating point)



Trade-off: EMAC Energy-Delay-Product
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⋆: Lowest accuracy degradation (from 32-bit floating point)

◇ Fixed-point exhibits lowest EDP, but worst 
performance

◇ Posits have competitive EDP with floats at 
similar accuracy degradations
� Floats generally have lower EDP

◇ Deep Positron with posit (es = 1) has better 
energy-delay-product and accuracy for [5, 7] 
bits 
� For 8-bit, es = 1 is a better fit for energy-

efficient applications and es = 2 for 
accuracy-dependent applications



Comparison of posit 
arithmetic hardware 
implementations
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Conclusion
◇ Posits are a natural fit for low-precision DNN 

inference
◇ Posits can be fine-tuned for either accuracy-critical 

or latency-critical applications

◇ A system level optimization is required for large 
scale analysis and energy savings(with EMACs)
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