
Posit	Arithmetic
Lecture	1

Prof.	John	L.	Gustafson
A*STAR	and	National	University	of	Singapore

26	March	2019



The	Most	Ancient	of	All	Formats:	Unary

Repeated	symbols	for	counting	numbers	1,	2,	3,…

2



Regime Notation:	Signed Unary,	by	Using	Bits
000001
00001
0001
001
01
10
110
1110
11110
111110

–5
–4
–3
–2
–1
0
1
2
3
4

A	run	of	runlength identical	r bits is	
terminated	by	the	opposite	bit.

Represents	an	integer	k which	we	will	
need	later,	so	please	remember	this	part!

k =	–runlength if	r is	0,
k =			runlength – 1	if	r is	1.

Numbers	near	0	require	very	few	bits.
3



Circuits	exist	for	decoding	regime	bits
000001
00001
0001
001
01
10
110
1110
11110
111110

–5
–4
–3
–2
–1
0
1
2
3
4

The	CLZ		(count	leading	zeros)	instruction	is	
already	part	of	standard	floating-point	circuits.

4

CLZ	logic	(Wikipedia) Regime	shifter	(I.	Yonemoto)

1.0005
–1.0003
0.0002

⇨2×10–4



Early	computers	used	decimal internally!
This	is	an	example	of	the	
mistake	of	imposing	human	
tastes	on	hardware	design.

144
0001 0100 0100
Versus	native	binary,	8	bits:

10010000

27 24+ =	144ENIAC,	1946

Decimal	computers	took	about	7	times	as	many	gates	as	binary	computers. 5



History’s	Next	Mistake:	A	Separate	“Sign	Bit”

Negative	integers	were	originally	stored	in
“sign-magnitude”	form,	imitating	the	way	
humans	write	+	and	– before	digit	strings.

BAD	idea.	Why?	Well,	
here’s	one	reason:

IBM	701,	1953

+

0

5

101

–

1

5

101

+

0

0

000

–

1

0

000
Welcome	to	the	joys	of	
“negative	zero.” 6



Remember	adding	signed	numbers	in	school?

To	add	nonzero	signed	integers	m and	n:
Are	they	the	same	sign	or	different	sign?
If	they	are	the	same	sign,	add	their	magnitudes.
Apply	that	sign	to	the	resulting	sum,	DONE.

Else	if	they	have	different	signs,
Find	out	which	magnitude	is	bigger.
If	m has	bigger	magnitude,
Subtract	n’s	magnitude	from	m’s	magnitude.
Apply	m’s	sign	to	the	result.	DONE.

Else
Subtract	m’s	magnitude	from	n’s	magnitude.
Apply	n’s	sign	to	the	result.	DONE.

7



Modern	signed	integers	are	2’s	complement
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
–8
–7
–6
–5
–4
–3
–2
–1

wraparound …but	mathematically	and	computationally	far
better.	Here’s	the	addition	algorithm	for	2’s	
complement:

To	add	signed	integers	m and	n:
Add	like	unsigned	integers.	DONE

Not	as	human	
friendly…

+

0

5

101

–

1

5

011
??(flip	the	bits	and	add	1)

8



The	fundamental	idea	of	floating	point	format

9

Express	values	as	m × 2j, where	m and	j are	integers.
Use	a	fixed	set	of	bits	for	m and	a	fixed	set	for	j.

• Notice	we	need	both	negative	and	positive	m and	j.
• Before	the	IEEE	754	Standard	(1985),	there	were	many
different	schemes	for	where	the	bits	go	in	a	word,	and	how	to	
interpret	the	bits	as	signed	integers.
• Larger	dynamic	range	(more	bits	for	j)	means	less	accuracy	
(fewer	bits	for	m).	And	vice	versa.
• Note:	in	practice,	the	most	common	numbers	have	j near	zero.



The	IEEE	754	Standard	greatly	complicated	the	
fundamental	idea	of	a	floating	point	format

Sign Exponent Fraction

1	to	254 Normal	float

0 “Positive	zero”0 0

0 “Negative	zero”1 0

0 Subnormal	float>	0

255 Signed	infinities0

255 Signalling NaNs0

255 Quiet	NaNs1



The	fundamental	idea	of	posit format

11

Express	values	as	m × 2j, where	m and	j are	integers.
Use	regime	format for	j,	so	a	small j takes	fewer	bits.

• Creates	1-to-1	map	of	reals	to	integers,	monotone
• The	j is	represented	as	the	sum	of	two	integers:
• power-of-2	exponent e
(unsigned	integer	ranging	from	0	to	2es–1)
• a	“regime	exponent”	k,	the	power	of	useed =	2"#$.
• Put	more	simply:	the	2j scaling	is	2%"#$&'.



Some	Prefer	the	Geometric	Explanation
(This	is	how	posits	were	invented)

Instead	of	the	real	number	line,	
the	projective	reals put	“the	
point	at	infinity”	at	the	top	of	the	
circle…	the	first	step	to	making	
an	infinite	line	map	to	a	finite-
state	computer	format.
Big	positives	wrap	to	big	
negatives,	just	like	(2’s	
complement)	signed	integers.

12

+–
00

01
10

11



Subtle	change:	Treat	∞	the	way	floats	treat	“NaN”

��
0

��1

��
NaR

�� -1

Not	a	Real	(NaR)	is	the	catch-all		for	
−1� ,	0/0,	arcsin(3),	etc.

Unlike	±∞,	NaR always	propagates,	so	
1/NaR =	NaR,	not	0.

Why	“NaR”	and	not	“NaN”	(Not	a	
Number”?	Because	imaginary	and	
complex	numbers	are	numbers!	They’re	
just	not	real numbers.

13



The	es value	controls	the	dynamic	range.

14

The	northeast	value	is	called	the	useed.
Start	with	useed =	2,	then	do	useed←	useed2,	es times.

���

0 ���
1 /4

���1

���
4

���

NaR���
-4

��� -1

���
-1 /4

es = 1

���

0 ���
1 /2

���1

���
2

���

NaR���
-2

��� -1

���
-1 /2

es = 0
…

���

0 ���
1 /16

���1

���
16

���

NaR���
-16

��� -1

���
-1 /16

es = 2

𝑢𝑠𝑒𝑒𝑑 = 2"#$



Instead	of	overflow	and	underflow

•maxpos is	the	largest	magnitude	
positive	posit	value.
•minpos is	the	smallest	
magnitude	positive	posit	value.
• –maxpos is	the	largest	
magnitude	negative	posit	value.
• –minpos is	the	smallest	
magnitude	negative	posit	value.

15

maxpos

minpos–minpos

–maxpos

0

1–1

NaR



Pick	es = 1 and	append	another	bit.

16

New	maxpos

New	minpos

If	you	can	squeeze	another	integer	
power	of	2	between	two	adjacent	
points	of	the	previous,	do	so.	The	
appended	bit	is	an	exponent	bit.

The	new	maxpos is	the	old	maxpos
times	useed.	The	new	minpos is	the	
old	minpos divided	by	useed.	The	
appended	bit	is	a	regime	bit.

New	exp.	bit

����

0
����

1 /16 ����
1 /4

����1 /2

����1

����
2

����
4

����

16

����

NaR
����

-16����
-4

����
-2

���� -1

���� -1 /2

����
-1 /4

����
-1 /16



Fraction	bits	appear

17

• If	a	new	intermediate	value	
cannot	be	an	integer	power	of	
two,	use	the	average.	The	
appended	bit	is	a	fraction	bit.

• Unusual	property:	Posits	increase	
both	dynamic	range	and decimals	
of	accuracy	by	adding	bits	on	the	
right.

• Notice	that	half of	all	posits	use	
only	two regime	bits!

New	fraction	bit

Posit:	27	fraction	bits

Float:	23	fraction	bits�����

0
�����

1 /64
�����

1 /16 �����
1 /8 �����

1 /4
�����

3 /8
�����1 /2

�����3 /4

�����1

�����3 /2

�����
2

�����
3

�����
4

�����

8

�����

16

�����

64

�����

NaR
�����

-64
�����

-16�����

-8�����
-4

�����
-3

�����
-2

����� -3 /2

����� -1

����� -3 /4

����� -1 /2

�����
-3 /8

�����
-1 /4

�����
-1 /8

�����

-1 /16

�����

-1 /64



Making	posits	look	more	like	IEEE	floats:

01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Not	a	Real	(NaR):

Else,	2’s	complement	
sign,	with	accuracy	that	
tapers	automatically:

Sign	bit	s.
0 for	positive,
1 for	negative.

“Regime”	bits
Signed	unary	integer

representing	k,	the	power	of	2"#$.

Only	two
Exceptions:	

18

Total	posit	size	is	ps bits	

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Zero:

Fraction	bits f
Fraction	in	positional	
notation.	“Hidden	bit”	
is	always 1.

Fraction	size	is	fs bitsExponent	size
is	es bits

Exponent	bits	e
unsigned	integer.	Size	is
es = 0,			1,			2,…	for
ps =	8,	16,	32,…



Human	decoding	or	hardware	decoding?

Easier	to	
understand:

Check	for	0	and	NaR case	first.
Else	record	s.	If	s = 1,	find	magnitude	by	2’s	complement.
Find	k,	e,	and	f of	the	magnitude.
Posit	represents	the	number	(–1)s·useedk·2e·(1 + f/2fs).

Better	for	
circuit	design,	
but	cryptic:

Check	for	0	and	NaR cases	while	finding	s,	k,	e,	f concurrently.
Posit	represents	(1 − 3𝑠 + 𝑓) 5 2(67)$(%5"

#$&'&89

From			1	to			2	if	s = 0
From	–2	to	–1	if	s = 1

19



Visualization	of	8-bit	floats	vs	8-bit	posits

20

Normal floats

16 32 64 111 127

Bit pattern
000000002

to
011111112

1
4

1
2

1

2

4

8

16

Value

Normal floats

Subnormal floats

∞,
NaN

16 32 64 111 127

Bit pattern
000000002

to
011111112

1
64

15
64

1
2

1

2

4

8

16

Value

Floats

Posits

16 32 64 127

Bit pattern
000000002

to
011111112

1
64

1
32

1
16

1
8

1
4

1
2

1

2

4

8

16

32

64
Value

• 3-bit	exponent
• Follows	IEEE	rules
• Range	is	0.25	to	15.5
• Biased	towards	large	
magnitudes

• NaN exceptions	
consume	15	bit	
patterns.

• Subnormals have	
tapered	precision

• Biased	towards	
small	magnitudes

• Posits	have	balanced	
magnitude

• Range	is	1/64	to	64
• Smaller	slope	⇒
higher	accuracy



End	of
Posit	Arithmetic	Introduction

21


