Posit Arithmetic
Lecture 1

Prof. John L. Gustafson
A*STAR and National University of Singapore

a 26 March 2019
and Res.earch &
SINGAPORE

The Most Ancient of All Formats: Unary

Repeated symbols for counting numbers 1, 2, 3,...

—e i,

PR— N

—_— A

—edli.

—d.

—_— A

2

3

I 11 11

1 6 M
2 7
3 8 M
4 9 Il
5 10 JWrlH

Regime Notation: Signed Unary, by Using Bits

A run of runlength identical IS
terminated by the

Represents an integer < which we will
need later, so please remember this part!

=—runlength ifris o0,
= runlength — 1 if r is

Numbers near O require very few bits.

Circuits exist for decoding regime bits

oo The CLZ (count leading zeros) instruction is

S5 already part of standard floating-point circuits.

o o iy
0 1 o o VA v v ¥,
. B | m’rf sl

o 3 S | o T o v - -—)1' 51 i
a2 I TR . jk ﬁo) JJD »,
1.0005 % (oS mEE==h &f % w
gy = ale mpe Siye s
10003 o Pl =

0.0002 :

°60 -) CLZ logic (Wikipedia) Regime shifter (I. Yonemoto)

~>2x10™* :

Early computers used decimal internally!

i 40 L This is an example of the
\ 3 mistake of imposing human
tastes on hardware design.

144
— v \
0001 0100 0100

Versus native binary, 8 bits:

/100110000
ENIAC, 1946 - 27 + 24 =144

Decimal computers took about 7 times as many gates as binary computers.

I-_Iistory’s Next Mistake: A Separate “Sign Bit”

+5 —5
PN DN
0101 1101

BAD idea. Why? Well,
here’s one reason:

+0 -0
IBM 701, 1953 1 \ 1 \

Negative integers were originally stored in 0 000 1 000
“sign-magnitude” form, imitating the way Welcome to the joys of
humans write + and — before digit strings. “negative zero.” .

e

LN L e e e T s

Remember adding sighed numbers in school?

To add nonzero signed integers m and n:
Are they the same sign or different sign?
If they are the same sign, add their magnitudes.
Apply that sign to the resulting sum, DONE.
Else if they have different signs,
Find out which magnitude is bigger.
If m has bigger magnitude,
Subtract n’s magnitude from m’s magnitude.
Apply m’s sign to the result. DONE.
Else
Subtract m’s magnitude from n’s magnitude.
Apply n’s sign to the result. DONE.

Modern signed integers are 2°s complement

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

wraparound

Not as human

_ +5 -5
friendly... 1 \ 1 \
0101 1 011

(flip the bits and add 1) \@/

...but mathematically and computationally far
better. Here’s the addition algorithm for 2’s

complement:
D

l
To add sighed integers m and n:
Add like unsigned integers. DONE

The fundamental idea of floating point format

Express values as m x 2/, where m and j are integers.

Use a fixed set of bits for m and a fixed set for .

* Notice we need both negative and positive m and .

e Before the IEEE 754 Standard (1985), there were many
different schemes for where the bits go in a word, and how to
interpret the bits as sighed integers.

e Larger dynamic range (more bits for j) means less accuracy
(fewer bits for m). And vice versa.

* Note: in practice, the most common numbers have j near zero.

9

The IEEE 754 Standard greatly complicated the
fundamental idea of a floating point format

Sign Exponent Fraction

Normal float

0 “Positive zero”

O “Negative zero”

Subnormal float

C Signed infinities

Signalling NaNs

Quiet NaNs

\Y4
(@&

The fundamental idea of posit format

Express values as m x 2/, where m and j are integers.

Use regime format for j, so a small j takes fewer bits.

* Creates 1-to-1 map of reals to integers, monotone

* The jis represented as the sum of two integers:

e power-of-2 exponent ¢
(unsigned integer ranging from O to 2¢°-1)

* a “regime exponent” k, the power of useed =
* Put more simply: the 2/ scaling is k2% +e,

es
227,

11

Some Prefer the Geometric Explanation
(This is how posits were invented)

Instead of the real number line,
the projective reals put “the
point at infinity” at the top of the
circle... the first step to making
an infinite line map to a finite-
state computer format.

Big positives wrap to big
negatives, just like (2’s
complement) signed integers.

Subtle change: Treat o= the way floats treat “NaN”

Not a Real (NaR) is the catch-all for
v—1, 0/0, arcsin(3), etc.

Unlike o=, NaR always propagates, so
1/NaR = NaR, not 0.

Why “NaR” and not “NaN” (Not a
Number”? Because imaginary and
complex numbers are numbers! They’re
just not real numbers.

13

The es value controls the dynamic range.

The northeast value is called the useed.
Start with useed = 2, then do useed & useed?, es times.

Instead of overflow and underflow
—Mmaxpos maxpos

* maxpos is the largest magnitude
positive posit value.

* minpos is the smallest
magnitude positive posit value.

* —maxpos is the largest
magnitude negative posit value.

* —minpos is the smallest
magnitude negative posit value.

—mIinpoS MInpos

15

Pick es = 1 and append another bit.

1000

If you can squeeze another integer
power of 2 between two adjacent
points of the previous, do so. The

appended bit is an exponent bit.

The new maxpos is the old maxpos
times useed. The new minpos is the
old minpos divided by useed. The
appended bit is a

16

Fractlon bits appear

1 10000

* If a new intermediate value
cannot be an integer power of
two, use the average. The
appended bit is a fraction bit.

 Unusual property: Posits increase
both dynamic range and decimals
of accuracy by adding bits on the
right.

* Notice that half of all posits use
only two regime bits!

<+————— Posit: 27 fraction bits ———
1/6401/64 | I I T T T T T T T Y [T T T T O O O O O O |

|||||||||||||||||||||| 17

Making posits look more like IEEE floats:

“ Total posit size is ps bits

v

Only two Zero: |olololo|ololo|o|o|olololo|o|o]olololo|o|olofolo|o|o|olololo]o]o
Exceptions:
Not a Real (NaR): [1|o|o|o|o|o|o(o|o|0|o|0(0|0|0|0|0O[0|O|O|0O|O[O|O(O|O|O[O|O(O|O|O

sign, with accuracy that

Else, 2’s complement I

tapers automatically:

. . Exponent4size
Sign bit s. / e

is es bits
0 for positive, ‘

1 for negative.

Exponent bits e

Signed unary integer
representing k, the power of 2¢ .

unsigned integer. Size is
265 es=0, 1, 2,..for
ps =38, 16, 32,...

v

Fraction size is fs bits

N

Fraction bits f
Fraction in positional
notation. “Hidden bit”
is always 1.

18

Human decoding or hardware decoding?

Easier to Check for 0 and NaR case first.
understand: Else record s. If s = 1, find magnitude by 2’s complement.
Find &, e, and f of the magnitude.
Posit represents the number (1) 2¢(1 + f/25).
Better for Check for 0 and NaR cases while finding s, k, e, f concurrently.
circuit design, posit represents (1 — 3s + f) - 20D (27 +es)
but cryptic: ' / '

From 1lto 2ifs=0
From—-2to-1ifs=1
19

Visualization of 8-bit floats vs 8-bit posits

Value
16
...../
ol ;
.'f/
4} Normal floats /
2t '...
‘!/ Bit pattern
1 Y 00000000,
16 32 64 111 127 to
1 ...r'/ 011111112
1| ;
.'/

1 $
1

* 3-bit exponent

* Follows IEEE rules

* Rangeis 0.25t0 15.5

* Biased towards large

magnitudes

Value

16

[ee]

.../ NaN Bit pattern

.- .) | 000000002
16 32 /S 64 11 127 to

....p 011111112
:./ * NaN exceptions
$ consume 15 bit

patterns.
e Subnormals have
Subnormal floats tapered precision

* Biased towards
small magnitudes

Value
64}

32t

161

A= [N
r r

@ |~
T

s
/
£
Float7‘ /
.’. .:.
‘,/ Posits Bit pattern
o f 00000000,
16 32 / 64 127 to

®
..o'
[
°
[)
°

s 011111115

* Posits have balanced
magnitude

* Rangeis 1/64 to 64

* Smaller slope =
higher accuracy

20

End of
Posit Arithmetic Introduction

