
CoNGA’19 | BOCCO Andrea | 13 March 2019

SMURF: SCALAR MULTIPLE-PRECISION UNUM RISC-V FLOATING-
POINT ACCELERATOR FOR SCIENTIFIC COMPUTING

| 2

INTRODUCTION: STATE OF THE ART

Ø Variable Precision (VP) computing has been investigated to improve
convergence of algorithms based on the IEEE 754 [1] standard :
§ Software (SW): GMP [2] and MPFR [3]

§ Slow, they might not met requirements in high speed applications
§ Hardware (HW):

§ Kulisch [4] : large fixed point accumulator
§ Schulte and Swartzlander [5] : mantissas divided in multiple words

Ø None of the previous works show how to store efficiently VP Floating
Point (FP) number in main memory
§ They support IEEE 754 FP format in main memory

[1] IEEE754-2008 2008. IEEE Standard for Floating-Point Arithmetic. IEEE 754-2008 https://doi.org/10.1109/IEEESTD.2008.4610935
[2] Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
[3] Laurent Fousse, et al. MPFR: A Multiple precision Binary Floating-point Library with Correct Rounding. https://doi.org/10.1145/1236463.1236468
[4] Ulirich Kulisch. 2013. Computer arithmetic and validity: Theory, implementation, and applications
[5] M. J. Schulte and E. E. Swartzlander. 2000. A family of variable precision interval arithmetic processors. https://doi.org/10.1109/12.859535

| 3

INTRODUCTION: MY WORK

In this work we present the SMURF:
• Scalar
• Multiple-precision
• Unum
• Risc-V
• Floating-point Accelerator for Scientific Computing

SMURF: VP FP hardware accelerator
§ It supports the UNUM type I FP format in main

memory up to 256 mantissa bits.
§ It supports internally FP numbers with up to 512

mantissa bits.
§ It supports Interval Arithmetic (IA)

| 4

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 5

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 6

CHOICE OF THE MEMORY FORMAT: THE UNUM TYPE I

We decided to use the UNUM type I FP format in main memory
• It is 6 sub-fields self-descriptive FP format

3 more that conventional IEEE 754 FP numbers
• WHY?

• UNUM is a VP FP format
• It self-handles the exponent and fraction field lengths

However UNUM type I has some peculiarities to be fixed:
• How to organize UNUM arrays in main memory
• How to organize the UNUM fields in memory

s e f u es-1 fs-1

sign exponent fraction ubit exponent
size

fraction
size

es bits fs bits

| 7

REFINEMENTS ON THE UNUM TYPE I FP FORMAT:
- UNUM ARRAY ORGANIZATION

Handling a two-element UNUM array on main memory with p bits parallelism

U2_0 U2_1 U2_2

U1_0 U1_1

p p

2p 3p0 p

p

U2 :

U1 :

bit
length

p

@2’:

@1’:

FF--FF

00--00 1

U1_1

U1_0

U2_1

U2_0

U2_2

@2’’:

@1’:

pFF--FF

00--00 2

U1_1

U1_0

U2_2

U2_1

U2_0 U3_2

U3_1

U3_0

U3_2

U3_1

U3_0

!

U3=U1*U2
Array support:
Guarantee
affine memory
accesses

| 8

REFINEMENTS ON THE UNUM TYPE I FP FORMAT:
- UNUM FIELD ORGANIZATION

For a UNUM/ubound which spans multiple addresses in main memory it is
important to have the descriptor fields present in the lower addresses.
Ø We have re-organized the order of the fields for UNUM and ubound

left right left right left right
s u es-1 fs-1 s u es-1 fs-1 e e f f

s u es-1 fs-1 e f

2

1
LSB MSB

@1’:

pFF--FF

00--00

U1

?

?

?

?

?

?

p

@1’:

FF--FF

00--00

U1

?

@2’:U2 ?

| 9

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 10

Data organization:
Ø UNUMs/u-bounds are strictly considered as memory formats
Ø Data inside the coprocessor scratchpad have dedicated FP format

§ Mantissa is normalized
§ Mantissa is divided in 8 chunks of 64 bits each
§ Exponent is explicit and signed

Ø Conversions between formats are handled by a dedicated Load
and Store unit (L&S)

THE SMURF ARCHITECTURE

gRF[i]

f e L

64

.1 m0
m1
···

mLmax

f e L

64

.1 m0
m1
···

mLmax

| 11

• 1 integer register file (iRF): 32 integer general purpose register
(GPR) + pc, in the main processor.

• 1 g-bound register file (gRF): 32 entries, in the co-processor.
• UNUMs/u-bounds are strictly considered as memory formats:

• Load operations:
• Load UNUMs/u-bounds from the main memory, and converts them into internal g-bounds.

• Store operations:
• Convert internal g-bounds (entries of the internal gRF) into u-bounds. Store the latter the

main memory.
• The coprocessor internal parallelism is fixed to 64 bits
• Coprocessor’s status registers:

• DUE
• SUE
• WGP

THE SMURF ARCHITECTURE

Rocket tile

UNUM
co-proc

RoCC

L&S

RISC-V
Rocket
Chip

FPU

L&S
$
L1

R
A
M

Scratchpad

$
L1

R
A
M

1

2
3

4

5

| 12

Mantissas are divided in chunks of 64 bits
Ø The WGP status register defines the maximum mantissa chunks

that an operator of the coprocessor can output.

Ø The user has a latency/precision tradeoff to exploit for his
computation

THE SMURF ARCHITECTURE

gOP

gRF[7]

f e L

64

.1 m0
m1
···

mLmax

f e L

64

.1 m0
m1
···

mLmax

gRF[3]

f e L

64

.1 m0
m1
···

mLmax

f e L

64

.1 m0
m1
···

mLmax

gRF[10]

f e L

64

.1 m0
m1
···

mLmax

f e L

64

.1 m0
m1
···

mLmax

WGP = 2

| 13

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 14

THE SMURF INSTRUCTION SET ARCHITECTURE (ISA)

• The SMURF ISA is divided in four groups:

| 15

THE SMURF INSTRUCTION SET ARCHITECTURE (ISA)

• The SMURF ISA is divided in four groups:
• Status Register settings

| 16

THE SMURF INSTRUCTION SET ARCHITECTURE (ISA)

• The SMURF ISA is divided in four groups:
• Status Register settings
• Mov operations

| 17

THE SMURF INSTRUCTION SET ARCHITECTURE (ISA)

• The SMURF ISA is divided in four groups:
• Status Register settings
• Mov operations
• Arithmetic operations

| 18

THE SMURF INSTRUCTION SET ARCHITECTURE (ISA)

• The SMURF ISA is divided in four groups:
• Status Register settings
• Mov operations
• Arithmetic operations
• Load and Store operations

| 19

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 20

THE SMURF MICRO-ARCHITECTURE HARDWARE
IMPLEMENTATION

RoCC
interface

Instr.

Data out

Data In

Memory
Interface

(cache L1)

cwControl
Unit

gRF
• 2 read ports
• 1 write port
• 32 VP g-bounds

(64 g-numbers)

d_cw

gALU

gop2
gop1

e_cw

gres

gres_dec

gres_exe

bus arbiter

go
p1

 +
 g

op
2

gr
es

gADD / gSUB
gGUESS / gRADIUS

gMUL

gMOV

gCMP

gLSU
G2U U2G

Cache IF

S
R

Left

…

f e L

DW

m1

mLmax

.1 m0

Right

…

f e L

DW

m1

mLmax

.1 m0

4 5

6

7 8

9

2 31

| 21

THE SMURF MICRO-ARCHITECTURE HARDWARE
IMPLEMENTATION

Internal operators pipelines are divided in “macro-stages”:
Ø A “macro-stage” is the logic which iterates on mantissas chunks:

§ It implements a basic mantissa operation: mov, lzc, add, sub, shift, mul, …
§ It reads the input mantissa from an input buffer (BUFF)
§ It computes the resulting mantissa chunk-wise (64 bits per clock cycle)

§ Variable latency
§ It writes the computed result in an output buffer (BUFF)
§ It is synchronized with others macro-stages through a ready-valid protocol

§ Stop and Wait protocol

Ø In this way, the complexity to do operations on multiple mantissas
chunks is pushed inside each macro stage.

STAGE
i-1

STAGE
i

STAGE
i+1

ready
valid

ready
valid

BUFF

…

f e L

DW

m1

mLmax

. m0IB

GB

BUFF

…

f e L

DW

m1

mLmax

. m0IB

GB

FF-barrierFF-barrier

| 22

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 23

VALIDATION, FPGA INTEGRATION AND SYNTHESIS
RESULTS

Validation: SMURF sub-components are validated against 50 millions pseudo-
generated input vectors
FPGA integration: SMURF is integrated in a Xilinx Virtex 7 FPGA board @50 MHz
ASIC synthesis: working frequency 600MHz

| 24

VALIDATION, FPGA INTEGRATION AND SYNTHESIS
RESULTS

Validation: SMURF sub-components are validated against 50 millions pseudo-
generated input vectors
FPGA integration: SMURF is integrated in a Xilinx Virtex 7 FPGA board @50 MHz
ASIC synthesis: working frequency 600MHz

Ø Buffers have an important contribution
in area (67%) and power (25%)

Ø We can reduce the buffer impact
optimizing the design

| 25

VALIDATION, FPGA INTEGRATION AND SYNTHESIS
RESULTS

RISC-V
1%

64bit FPU
2%

I cache
9%

D cache
13%

gMUL
7%

gLSU
4%
gRF
2%

gADD
2%

gCMP
1%

clock tree
50%

others
9%

ASIC POWER [%]

UNUM
coproc:
17,9 %

RISC-V
+
FPU:
2,3 %

RISC-V
2%

64bit FPU
4%

I cache
27%

D cache
31%

gMUL
9%

gRF
9%

gLSU
5%

gADD
4%

gCMP
2%

others
7%

ASIC AREA [%]

UNUM
coproc:
29,7 %

Rocket
core
+
FPU:
4,9 %

The SMURF coprocessor vs. a standard IEEE FPU:
• 9 times bigger
• 12 times more energy consuming
• Flops performances have the same order of magnitude

Ø This unit is meant to be used only when VP is needed: the rest of
the time it behaves as dark silicon

| 26

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 27

AN EXPERIMENTAL SOFTWARE SETUP

We measured the SMURF flop
performance on a Newton-Raphson (NR)
division example:
The latency of a NR iteration
• Using the SMURF it varies between

33 and 362 clock cycles:
54 – 5 Mflops @ 600MHz

• Using MPFR with 512-bits of accuracy
1 Mflop @ 600MHz

• Using the IEEE FPU it takes
3 clock cycles:
200 Mflops @ 600MHz

Ø +5x performance with respect to MPFR
Ø -4x performance with respect to 64bits

IEEE FPU

| 28

AN EXPERIMENTAL SOFTWARE SETUP

We measured the SMURF flop
performance on a Newton-Raphson (NR)
division example:
The latency of a NR iteration
• Using the SMURF it varies between

33 and 362 clock cycles:
54 – 5 Mflops @ 600MHz

• Using MPFR with 512-bits of accuracy
1 Mflop @ 600MHz

• Using the IEEE FPU it takes
3 clock cycles:
200 Mflops @ 600MHz

Ø +5x performance with respect to MPFR
Ø -4x performance with respect to 64bits

IEEE FPU

Work in progress:
Ø We are working on a real programming

model to program real VP FP kernels

| 29

OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions

| 30

CONCLUSIONS

This work proposes a Variable Precision (VP) Floating Point (FP) accelerator
(SMURF) based on RISC-V ISA (Instruction Set Architecture) for high
performance computing servers as an alternative to VP FP software routines.
• SMURF is implemented as a RISC-V coprocessor
• SMURF supports UNUM/ubound format in main memory

• It supports several Unum Environments: from (1,1) to (4,8), up to 256 mantissa bits
• SMURF supports a dedicated internal format in its Register File

• 32 intervals; Each interval endpoint can have up to 512 mantissa bits
• SMURF is pipelined with an internal parallelism fixed at 64 bit

• Mantissas are threated iteratively 64 bits per clock cycle
• SMURF has 9x area and 12x power with respect a standard IEEE 64bit

FPU
• The SMURF behaves as dark silicon when is not used

• SMURF flops performances are better than software libraries (MPFR) and
they stays within the same range of a regular fixed-precision IEEE FPU.

Leti, technology research institute
Commissariat à l’énergie atomique et aux énergies alternatives
Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France
www.leti.fr

THANK YOU FOR
YOUR ATTENTION!

Contacts:
Andrea BOCCO
andrea.bocco@cea.fr

