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INTRODUCTION: STATE OF THE ART

Ø Variable Precision (VP) computing has been investigated to improve 
convergence of algorithms based on the IEEE 754 [1] standard :
§ Software (SW): GMP [2] and MPFR [3]

§ Slow, they might not met requirements in high speed applications
§ Hardware (HW):

§ Kulisch [4] : large fixed point accumulator
§ Schulte and Swartzlander [5] : mantissas divided in multiple words

Ø None of the previous works show how to store efficiently VP Floating 
Point ( FP) number in main memory
§ They support IEEE 754 FP format in main memory

[1] IEEE754-2008 2008. IEEE Standard for Floating-Point Arithmetic. IEEE 754-2008 https://doi.org/10.1109/IEEESTD.2008.4610935
[2] Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
[3] Laurent Fousse, et al. MPFR: A Multiple precision Binary Floating-point Library with Correct Rounding. https://doi.org/10.1145/1236463.1236468
[4] Ulirich Kulisch. 2013. Computer arithmetic and validity: Theory, implementation, and applications
[5] M. J. Schulte and E. E. Swartzlander. 2000. A family of variable precision interval arithmetic processors. https://doi.org/10.1109/12.859535
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INTRODUCTION: MY WORK

In this work we present the SMURF:
• Scalar
• Multiple-precision
• Unum
• Risc-V
• Floating-point Accelerator for Scientific Computing

SMURF: VP FP hardware accelerator
§ It supports the UNUM type I FP format in main 

memory up to 256 mantissa bits.
§ It supports internally FP numbers with up to 512 

mantissa bits.
§ It supports Interval Arithmetic (IA)
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OUTLINE

• Choice of the memory format: the UNUM type I
• The SMURF architecture
• The SMURF Instruction Set Architecture (ISA)
• The SMURF micro-architecture hardware implementation
• Validation, FPGA integration and Synthesis results
• An experimental software setup of the SMURF architecture.
• Conclusions
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CHOICE OF THE MEMORY FORMAT: THE UNUM TYPE I

We decided to use the UNUM type I FP format in main memory
• It is 6 sub-fields self-descriptive FP format

3 more that conventional IEEE 754 FP numbers
• WHY?

• UNUM is a VP FP format
• It self-handles the exponent and fraction field lengths

However UNUM type I has some peculiarities to be fixed:
• How to organize UNUM arrays in main memory
• How to organize the UNUM fields in memory

s e f u es-1 fs-1

sign exponent fraction ubit exponent
size

fraction
size

es bits fs bits
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REFINEMENTS ON THE UNUM TYPE I FP FORMAT:
- UNUM ARRAY ORGANIZATION

Handling a two-element UNUM array on main memory with p bits parallelism
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REFINEMENTS ON THE UNUM TYPE I FP FORMAT:
- UNUM FIELD ORGANIZATION

For a UNUM/ubound which spans multiple addresses in main memory it is 
important to have the descriptor fields present in the lower addresses.
Ø We have re-organized the order of the fields for UNUM and ubound
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Data organization:
Ø UNUMs/u-bounds are strictly considered as memory formats
Ø Data inside the coprocessor scratchpad have dedicated FP format

§ Mantissa is normalized
§ Mantissa is divided in 8 chunks of 64 bits each
§ Exponent is explicit and signed

Ø Conversions between formats are handled by a dedicated Load 
and Store unit (L&S)

THE SMURF ARCHITECTURE
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• 1 integer register file (iRF): 32 integer general purpose register 
(GPR) + pc, in the main processor.

• 1 g-bound register file (gRF): 32 entries, in the co-processor.
• UNUMs/u-bounds are strictly considered as memory formats:

• Load operations:
• Load UNUMs/u-bounds from the main memory, and converts them into internal g-bounds.

• Store operations:
• Convert internal g-bounds (entries of the internal gRF) into u-bounds. Store the latter the 

main memory.
• The coprocessor internal parallelism is fixed to 64 bits
• Coprocessor’s status registers:

• DUE
• SUE
• WGP

THE SMURF ARCHITECTURE
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Mantissas are divided in chunks of 64 bits
Ø The WGP status register defines the maximum mantissa chunks 

that an operator of the coprocessor can output.

Ø The user has a latency/precision tradeoff to exploit for his 
computation

THE SMURF ARCHITECTURE
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THE SMURF INSTRUCTION SET ARCHITECTURE (ISA)

• The SMURF ISA is divided in four groups:
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THE SMURF MICRO-ARCHITECTURE HARDWARE 
IMPLEMENTATION
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THE SMURF MICRO-ARCHITECTURE HARDWARE 
IMPLEMENTATION

Internal operators pipelines are divided in “macro-stages”:
Ø A “macro-stage” is the logic which iterates on mantissas chunks:

§ It implements a basic mantissa operation: mov, lzc, add, sub, shift, mul, …
§ It reads the input mantissa from an input buffer (BUFF)
§ It computes the resulting mantissa chunk-wise (64 bits per clock cycle)

§ Variable latency
§ It writes the computed result in an output buffer (BUFF)
§ It is synchronized with others macro-stages through a ready-valid protocol

§ Stop and Wait protocol

Ø In this way, the complexity to do operations on multiple mantissas 
chunks is pushed inside each macro stage.
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VALIDATION, FPGA INTEGRATION AND SYNTHESIS 
RESULTS

Validation: SMURF sub-components are validated against 50 millions pseudo-
generated input vectors
FPGA integration: SMURF is integrated in a Xilinx Virtex 7 FPGA board @50 MHz
ASIC synthesis: working frequency 600MHz
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RESULTS

Validation: SMURF sub-components are validated against 50 millions pseudo-
generated input vectors
FPGA integration: SMURF is integrated in a Xilinx Virtex 7 FPGA board @50 MHz
ASIC synthesis: working frequency 600MHz

Ø Buffers have an important contribution 
in area (67%) and power (25%)

Ø We can reduce the buffer impact 
optimizing the design
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VALIDATION, FPGA INTEGRATION AND SYNTHESIS 
RESULTS
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The SMURF coprocessor vs. a standard IEEE FPU:
• 9 times bigger
• 12 times more energy consuming
• Flops performances have the same order of magnitude

Ø This unit is meant to be used only when VP is needed: the rest of 
the time it behaves as dark silicon
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AN EXPERIMENTAL SOFTWARE SETUP

We measured the SMURF flop 
performance on a Newton-Raphson (NR) 
division example:
The latency of a NR iteration
• Using the SMURF it varies between

33 and 362 clock cycles:
54 – 5 Mflops @ 600MHz

• Using MPFR with 512-bits of accuracy
1 Mflop @ 600MHz

• Using the IEEE FPU it takes
3 clock cycles:
200 Mflops @ 600MHz

Ø +5x performance with respect to MPFR
Ø -4x performance with respect to 64bits 

IEEE FPU
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Work in progress:
Ø We are working on a real programming 

model to program real VP FP kernels
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CONCLUSIONS

This work proposes a Variable Precision (VP) Floating Point (FP) accelerator
(SMURF) based on RISC-V ISA (Instruction Set Architecture) for high 
performance computing servers as an alternative to VP FP software routines.
• SMURF is implemented as a RISC-V coprocessor
• SMURF supports UNUM/ubound format in main memory

• It supports several Unum Environments: from (1,1) to (4,8), up to 256 mantissa bits
• SMURF supports a dedicated internal format in its Register File

• 32 intervals; Each interval endpoint can have up to 512 mantissa bits
• SMURF is pipelined with an internal parallelism fixed at 64 bit 

• Mantissas are threated iteratively 64 bits per clock cycle
• SMURF has 9x area and 12x power with respect a standard IEEE 64bit 

FPU
• The SMURF behaves as dark silicon when is not used

• SMURF flops performances are better than software libraries (MPFR) and 
they stays within the same range of a regular fixed-precision IEEE FPU.
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