Exploring Next-Generation Numbers for Generative Artificial Intelligence

Himeshi De Silva, Nhut-Minh Ho A*STAR Singapore, National University of Singapore

himeshi_de_silva@a-star.edu.sg, minhhn@comp.nus.edu.sg

Outline

- Background and Motivation
- Qtorch2 & LM Evaluation Harness Integration
- Numerical behavior of recent AI Models
- Experiments and Results
- Discussion and Future work

Background

- Number of parameters in large language models such as the latest GPT can range in the trillions
- Growing movement towards smaller, open-source, openweight models
- Mixed precision, quantization, low-bit numbers reduce model size
- Qtorch+
- Posits
- Evaluating LLMs

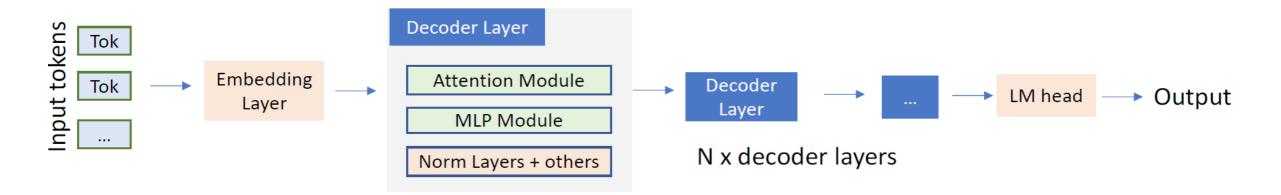
Qtorch2

- Fully compatible with Pytorch 2.4+
- Supports current SOTA models on HuggingFace
- Qtorch2
 - Intercepts tensor operations in Pytorch
 - Dequantizes values to FP32
 - Performs model computations
 - Converts results to FP32

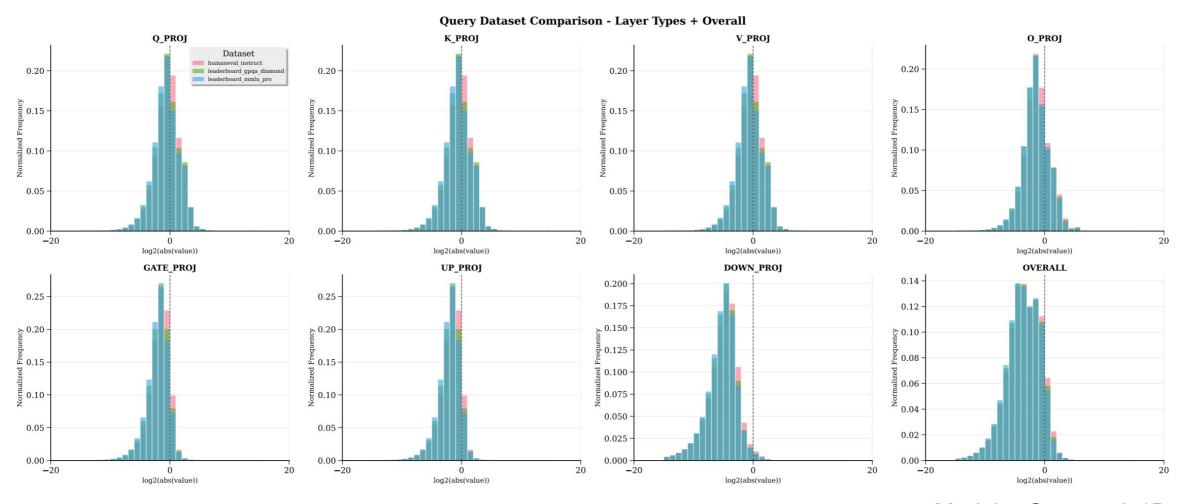
Qtorch2

- LM Evaluation Harness Integration
 - Allows benchmarking on popular academic and industry benchmarks
 - Supports models on HuggingFace and local models
 - Simulate quantization of SOTA models on latest benchmarks

Qtorch2

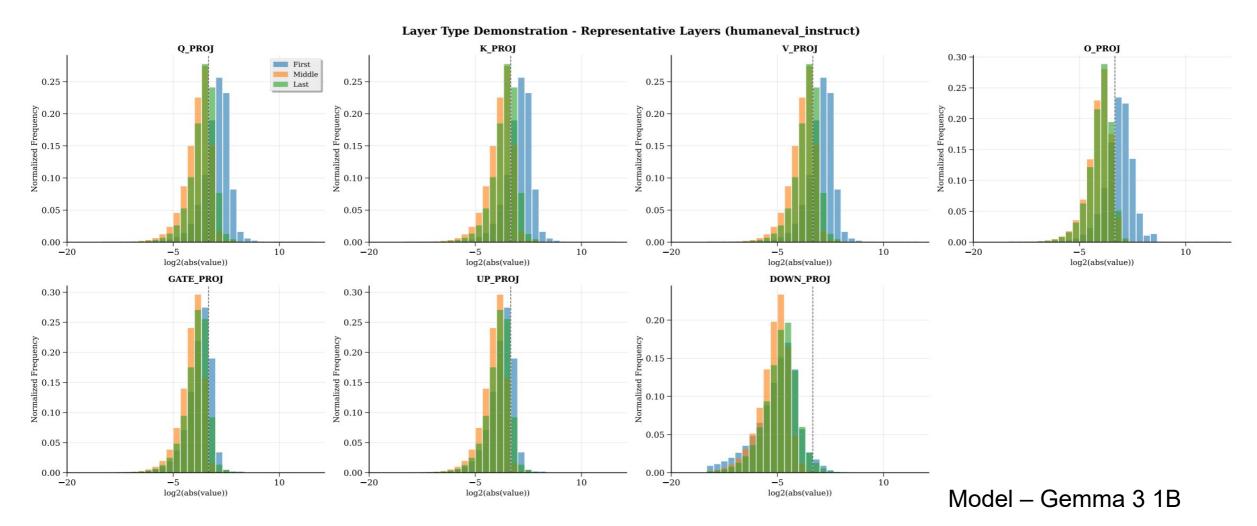

Loading models in BFloat16 (work-in-progress)

```
1 p = bfloat16 posit8 quantize(a,nsize=8,es=1)
   2 print(p.dtype)
   3 print(p)
torch.bfloat16
tensor([-20.0000, -16.0000, -15.0000, -12.0000, -10.0000, -7.5000, -5.0000,
        -2.5000, 0.0000, 2.5000, 5.0000, 7.5000, 10.0000, 12.0000,
        15.0000, 16.0000], dtype=torch.bfloat16)
   1 p2= bfloat16 posit8 quantize(a,nsize=7,es=1)
   2 print(p2.dtype)
   3 print(p2)
torch.bfloat16
tensor([-16.0000, -16.0000, -16.0000, -8.0000, -6.0000, -4.0000, -6.0000,
        -1.5000, 0.0000, 1.5000, 6.0000, 4.0000, 6.0000, 8.0000,
        16.0000, 16.0000], dtype=torch.bfloat16)
```

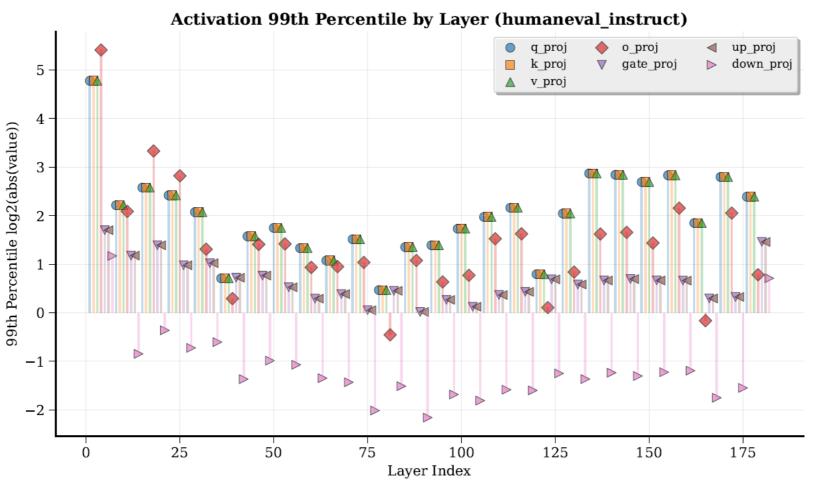

Numerical Characteristics of Recent Almodels

LLMs

 Computational cost greater in linear projections used in attention blocks and MLP blocks



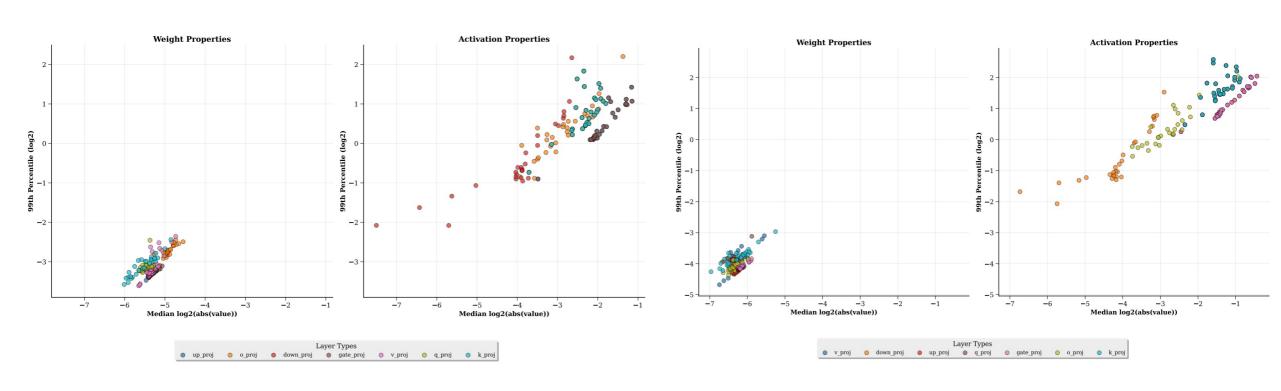
Activations across different inputs



Model - Gemma 3 1B

Activations of different layers of the same type in the same model

Activations of different layers of the same type in the same model


Weights and activations of models of different sizes in the same family

Model – Gemma 3 4B

Model – Gemma 3 1B

Weights and activations of models same size of different families

Summary of Observations

- Activations and weights have different numerical characteristics
- Variation of numerical distribution across different benchmarks is small
- There is some variation across layers based on their layer index => Exponent scaling
- Models in the same family display similar numerical behavior

Experiments

- 1 Standard posits, gradually reduce bitwidth
- 2 Apply exponent scaling
- Models Gemma 1B & 4B, Qwen 2.5 1.5B, Deepseek R1 1.5B
- Benchmarks ARC Challenge, GPQA Diamond

Results - ARC Challenge

	Original	P(8,1,1)	P(8,1,2)	P(6,1,1)	P(6,1,2)	P(4,1,1)	P(4,1,2)	P(3,1,1)	P(3,1,2)
Gemma_3_4B	53.3	51.9	52.4	29.3	28.6	20.7	21.5	22.5	23.4
Gemma_3_1B	35.2	35.6	36.3	21.3	21.2	21.0	22.6	21.8	22.1
Qwen_2.5_1.5B	39.2	32.0	29.4	19.8	28.8	22.4	21.2	22.7	23.7
DeepSeek_R1_1.5B	32.3	26.1	29.9	20.1	19.5	22.8	23.3	25.3	21.7

P(8,1,1) => 8-bit posits, weight exponent = 1, activation exponent = 1

Results - GPQA Diamond

	Original	P(8,1,1)	P(8,1,2)	P(6,1,1)	P(6,1,2)	P(4,1,1)	P(4,1,2)	P(3,1,1)	P(3,1,2)
Gemma3_4B	35.4	31.8	29.8	30.3	26.3	18.2	27.3	23.7	26.8
Gemma3_1B	24.2	24.2	23.2	24.2	30.3	25.8	24.7	19.2	23.2
Qwen_2.5_1.5B	24.7	23.2	24.2	21.7	24.2	22.2	26.8	20.2	18.7
DeepSeek_R1_1.5B	31.3	29.8	26.8	26.8	29.8	24.7	20.2	28.3	21.7

Results - ARC Challenge with scaling

	P(8,1,1)-(5,1)	P(8,1,1)-(5,2)	P(8,1,2)-(5,1)	P(8,1,2)- $(5,2)$
Gemma_3_4B	52.4	51.5	53.2	53.3
Gemma_3_1B	35.3	34.5	35.1	35.6
Qwen_2.5_1.5B	32.7	38.4	30.6	28.8
DeepSeek_R1_1.5B	24.6	23.5	30.2	27.0

Results - GPQA Diamond with scaling

	P(8,1,1)-(5,1)	P(8,1,1)-(5,2)	P(8,1,2)-(5,1)	P(8,1,2)-(5,2)
Gemma3_4B	33.3	30.3	36.4	34.3
Gemma3_1B	22.7	27.8	24.7	25.3
Qwen_2.5_1.5B	24.2	22.2	28.3	30.3
DeepSeek_R1_1.5B	26.8	28.8	27.8	27.8

P(8,1,1)-(5,1) => 8-bit posits, weight exponent = 1, activation exponent = 1, weight bias = 5, activation bias = 1

Results - HumanEval

	Original	P(8,1,1)	P(8,1,2)	P(6,1,1)	P(6,1,2)	P(4,1,1)	P(4,1,2)
Qwen_2.5_coder_1.5B	63.4	16.5	1.8	0.0	6.1	0.0	0.0
$Gemma_3_4B$	66.5	68.3	67.7	4.9	0.6	0.0	0.0

Without exponent bias

	P(8,1,1)- $(5,0)$	P(8,1,1)- $(5,2)$	P(8,1,2)- $(5,0)$	P(8,1,2)-(5,2)
Qwen_2.5_coder_1.5B	14.0	60.4	1.2	6.1
Gemma_3_4B	65.2	67.1	67.7	65.9

With exponent bias

Discussion & Future Work

- Enhancements to simulation of next-gen numbers with Qtorch2, integration with LM evaluation harness
- Selected posit configurations can be generalized with exponent bias
- Further bitwidth reduction with layer-wise exponent bias
- Test newer variations of posit and other number representations